openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

170 lines
6.1 KiB

import numpy as np
from common.transformations.camera import (FULL_FRAME_SIZE,
FOCAL,
get_view_frame_from_road_frame,
get_view_frame_from_calib_frame,
vp_from_ke)
# segnet
SEGNET_SIZE = (512, 384)
def get_segnet_frame_from_camera_frame(segnet_size=SEGNET_SIZE, full_frame_size=FULL_FRAME_SIZE):
return np.array([[float(segnet_size[0]) / full_frame_size[0], 0.0],
[0.0, float(segnet_size[1]) / full_frame_size[1]]])
segnet_frame_from_camera_frame = get_segnet_frame_from_camera_frame() # xx
# model
MODEL_INPUT_SIZE = (320, 160)
MODEL_YUV_SIZE = (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1] * 3 // 2)
MODEL_CX = MODEL_INPUT_SIZE[0] / 2.
MODEL_CY = 21.
model_fl = 728.0
model_height = 1.22
# canonical model transform
model_intrinsics = np.array([
[model_fl, 0.0, MODEL_CX],
[0.0, model_fl, MODEL_CY],
[0.0, 0.0, 1.0]])
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_fl = 910.0
medmodel_intrinsics = np.array([
[medmodel_fl, 0.0, 0.5 * MEDMODEL_INPUT_SIZE[0]],
[0.0, medmodel_fl, MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# CAL model
CALMODEL_INPUT_SIZE = (512, 256)
CALMODEL_YUV_SIZE = (CALMODEL_INPUT_SIZE[0], CALMODEL_INPUT_SIZE[1] * 3 // 2)
CALMODEL_CY = 47.6
calmodel_fl = 606.7
calmodel_intrinsics = np.array([
[calmodel_fl, 0.0, 0.5 * CALMODEL_INPUT_SIZE[0]],
[0.0, calmodel_fl, CALMODEL_CY],
[0.0, 0.0, 1.0]])
# BIG model
BIGMODEL_INPUT_SIZE = (1024, 512)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_fl = 910.0
bigmodel_intrinsics = np.array([
[bigmodel_fl, 0.0, 0.5 * BIGMODEL_INPUT_SIZE[0]],
[0.0, bigmodel_fl, 256 + MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# SBIG model (big model with the size of small model)
SBIGMODEL_INPUT_SIZE = (512, 256)
SBIGMODEL_YUV_SIZE = (SBIGMODEL_INPUT_SIZE[0], SBIGMODEL_INPUT_SIZE[1] * 3 // 2)
sbigmodel_fl = 455.0
sbigmodel_intrinsics = np.array([
[sbigmodel_fl, 0.0, 0.5 * SBIGMODEL_INPUT_SIZE[0]],
[0.0, sbigmodel_fl, 0.5 * (256 + MEDMODEL_CY)],
[0.0, 0.0, 1.0]])
model_frame_from_road_frame = np.dot(model_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
bigmodel_frame_from_road_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
medmodel_frame_from_road_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
medmodel_frame_from_calib_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
model_frame_from_bigmodel_frame = np.dot(model_intrinsics, np.linalg.inv(bigmodel_intrinsics))
medmodel_frame_from_bigmodel_frame = np.dot(medmodel_intrinsics, np.linalg.inv(bigmodel_intrinsics))
# 'camera from model camera'
def get_model_height_transform(camera_frame_from_road_frame, height):
camera_frame_from_road_ground = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 1],
]))
camera_frame_from_road_high = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, height - model_height],
[0, 0, 1],
]))
road_high_from_camera_frame = np.linalg.inv(camera_frame_from_road_high)
high_camera_from_low_camera = np.dot(camera_frame_from_road_ground, road_high_from_camera_frame)
return high_camera_from_low_camera
# camera_frame_from_model_frame aka 'warp matrix'
# was: calibration.h/CalibrationTransform
def get_camera_frame_from_model_frame(camera_frame_from_road_frame, height=model_height, camera_fl=FOCAL):
vp = vp_from_ke(camera_frame_from_road_frame)
model_zoom = camera_fl / model_fl
model_camera_from_model_frame = np.array([
[model_zoom, 0.0, vp[0] - MODEL_CX * model_zoom],
[0.0, model_zoom, vp[1] - MODEL_CY * model_zoom],
[0.0, 0.0, 1.0],
])
# This function is super slow, so skip it if height is very close to canonical
# TODO: speed it up!
if abs(height - model_height) > 0.001:
camera_from_model_camera = get_model_height_transform(camera_frame_from_road_frame, height)
else:
camera_from_model_camera = np.eye(3)
return np.dot(camera_from_model_camera, model_camera_from_model_frame)
def get_camera_frame_from_medmodel_frame(camera_frame_from_road_frame):
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
medmodel_frame_from_ground = medmodel_frame_from_road_frame[:, (0, 1, 3)]
ground_from_medmodel_frame = np.linalg.inv(medmodel_frame_from_ground)
camera_frame_from_medmodel_frame = np.dot(camera_frame_from_ground, ground_from_medmodel_frame)
return camera_frame_from_medmodel_frame
def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
bigmodel_frame_from_ground = bigmodel_frame_from_road_frame[:, (0, 1, 3)]
ground_from_bigmodel_frame = np.linalg.inv(bigmodel_frame_from_ground)
camera_frame_from_bigmodel_frame = np.dot(camera_frame_from_ground, ground_from_bigmodel_frame)
return camera_frame_from_bigmodel_frame
def get_model_frame(snu_full, camera_frame_from_model_frame, size):
idxs = camera_frame_from_model_frame.dot(np.column_stack([np.tile(np.arange(size[0]), size[1]),
np.tile(np.arange(size[1]), (size[0], 1)).T.flatten(),
np.ones(size[0] * size[1])]).T).T.astype(int)
calib_flat = snu_full[idxs[:, 1], idxs[:, 0]]
if len(snu_full.shape) == 3:
calib = calib_flat.reshape((size[1], size[0], 3))
elif len(snu_full.shape) == 2:
calib = calib_flat.reshape((size[1], size[0]))
else:
raise ValueError("shape of input img is weird")
return calib