You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
324 lines
12 KiB
324 lines
12 KiB
6 years ago
|
#!/usr/bin/env python3
|
||
|
import numpy as np
|
||
|
from . import loc_model
|
||
|
|
||
|
from .kalman_helpers import ObservationKind
|
||
|
from .ekf_sym import EKF_sym
|
||
|
from .feature_handler import LstSqComputer, unroll_shutter
|
||
|
from laika.raw_gnss import GNSSMeasurement
|
||
|
|
||
|
|
||
|
def parse_prr(m):
|
||
|
sat_pos_vel_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
|
||
|
m[GNSSMeasurement.SAT_VEL]))
|
||
|
R_i = np.atleast_2d(m[GNSSMeasurement.PRR_STD]**2)
|
||
|
z_i = m[GNSSMeasurement.PRR]
|
||
|
return z_i, R_i, sat_pos_vel_i
|
||
|
|
||
|
|
||
|
def parse_pr(m):
|
||
|
pseudorange = m[GNSSMeasurement.PR]
|
||
|
pseudorange_stdev = m[GNSSMeasurement.PR_STD]
|
||
|
sat_pos_freq_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
|
||
|
np.array([m[GNSSMeasurement.GLONASS_FREQ]])))
|
||
|
z_i = np.atleast_1d(pseudorange)
|
||
|
R_i = np.atleast_2d(pseudorange_stdev**2)
|
||
|
return z_i, R_i, sat_pos_freq_i
|
||
|
|
||
|
|
||
|
class States():
|
||
|
ECEF_POS = slice(0,3) # x, y and z in ECEF in meters
|
||
|
ECEF_ORIENTATION = slice(3,7) # quat for pose of phone in ecef
|
||
|
ECEF_VELOCITY = slice(7,10) # ecef velocity in m/s
|
||
|
ANGULAR_VELOCITY = slice(10, 13) # roll, pitch and yaw rates in device frame in radians/s
|
||
|
CLOCK_BIAS = slice(13, 14) # clock bias in light-meters,
|
||
|
CLOCK_DRIFT = slice(14, 15) # clock drift in light-meters/s,
|
||
|
GYRO_BIAS = slice(15, 18) # roll, pitch and yaw biases
|
||
|
ODO_SCALE = slice(18, 19) # odometer scale
|
||
|
ACCELERATION = slice(19, 22) # Acceleration in device frame in m/s**2
|
||
|
FOCAL_SCALE = slice(22, 23) # focal length scale
|
||
|
IMU_OFFSET = slice(23,26) # imu offset angles in radians
|
||
|
GLONASS_BIAS = slice(26,27) # GLONASS bias in m expressed as bias + freq_num*freq_slope
|
||
|
GLONASS_FREQ_SLOPE = slice(27, 28) # GLONASS bias in m expressed as bias + freq_num*freq_slope
|
||
|
CLOCK_ACCELERATION = slice(28, 29) # clock acceleration in light-meters/s**2,
|
||
|
|
||
|
|
||
|
class LocKalman():
|
||
|
def __init__(self, N=0, max_tracks=3000):
|
||
|
x_initial = np.array([-2.7e6, 4.2e6, 3.8e6,
|
||
|
1, 0, 0, 0,
|
||
|
0, 0, 0,
|
||
|
0, 0, 0,
|
||
|
0, 0,
|
||
|
0, 0, 0,
|
||
|
1,
|
||
|
0, 0, 0,
|
||
|
1,
|
||
|
0, 0, 0,
|
||
|
0, 0,
|
||
|
0])
|
||
|
|
||
|
# state covariance
|
||
|
P_initial = np.diag([10000**2, 10000**2, 10000**2,
|
||
|
10**2, 10**2, 10**2,
|
||
|
10**2, 10**2, 10**2,
|
||
|
1**2, 1**2, 1**2,
|
||
|
(200000)**2, (100)**2,
|
||
|
0.05**2, 0.05**2, 0.05**2,
|
||
|
0.02**2,
|
||
|
1**2, 1**2, 1**2,
|
||
|
0.01**2,
|
||
|
(0.01)**2, (0.01)**2, (0.01)**2,
|
||
|
10**2, 1**2,
|
||
|
0.05**2])
|
||
|
|
||
|
# process noise
|
||
|
Q = np.diag([0.03**2, 0.03**2, 0.03**2,
|
||
|
0.0**2, 0.0**2, 0.0**2,
|
||
|
0.0**2, 0.0**2, 0.0**2,
|
||
|
0.1**2, 0.1**2, 0.1**2,
|
||
|
(.1)**2, (0.0)**2,
|
||
|
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
|
||
|
(0.02/100)**2,
|
||
|
3**2, 3**2, 3**2,
|
||
|
0.001**2,
|
||
|
(0.05/60)**2, (0.05/60)**2, (0.05/60)**2,
|
||
|
(.1)**2, (.01)**2,
|
||
|
0.005**2])
|
||
|
|
||
|
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
|
||
|
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
|
||
|
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]),
|
||
|
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
|
||
|
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
|
||
|
ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]),
|
||
|
ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])}
|
||
|
|
||
|
# MSCKF stuff
|
||
|
self.N = N
|
||
|
self.dim_main = x_initial.shape[0]
|
||
|
self.dim_augment = 7
|
||
|
self.dim_main_err = P_initial.shape[0]
|
||
|
self.dim_augment_err = 6
|
||
|
self.dim_state = self.dim_main + self.dim_augment*self.N
|
||
|
self.dim_state_err = self.dim_main_err + self.dim_augment_err*self.N
|
||
|
|
||
|
# mahalanobis outlier rejection
|
||
|
maha_test_kinds = [ObservationKind.ORB_FEATURES] #, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE]
|
||
|
|
||
|
name = 'loc_%d' % N
|
||
|
loc_model.gen_model(name, N, self.dim_main, self.dim_main_err,
|
||
|
self.dim_augment, self.dim_augment_err,
|
||
|
self.dim_state, self.dim_state_err,
|
||
|
maha_test_kinds)
|
||
|
|
||
|
if self.N > 0:
|
||
|
x_initial, P_initial, Q = self.pad_augmented(x_initial, P_initial, Q)
|
||
|
self.computer = LstSqComputer(N)
|
||
|
self.max_tracks = max_tracks
|
||
|
|
||
|
# init filter
|
||
|
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_main, self.dim_main_err,
|
||
|
N, self.dim_augment, self.dim_augment_err, maha_test_kinds)
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
return self.filter.state()
|
||
|
|
||
|
@property
|
||
|
def t(self):
|
||
|
return self.filter.filter_time
|
||
|
|
||
|
@property
|
||
|
def P(self):
|
||
|
return self.filter.covs()
|
||
|
|
||
|
def predict(self, t):
|
||
|
return self.filter.predict(t)
|
||
|
|
||
|
def rts_smooth(self, estimates):
|
||
|
return self.filter.rts_smooth(estimates, norm_quats=True)
|
||
|
|
||
|
def pad_augmented(self, x, P, Q=None):
|
||
|
if x.shape[0] == self.dim_main and self.N > 0:
|
||
|
x = np.pad(x, (0, self.N*self.dim_augment), mode='constant')
|
||
|
x[self.dim_main+3::7] = 1
|
||
|
if P.shape[0] == self.dim_main_err and self.N > 0:
|
||
|
P = np.pad(P, [(0, self.N*self.dim_augment_err), (0, self.N*self.dim_augment_err)], mode='constant')
|
||
|
P[self.dim_main_err:, self.dim_main_err:] = 10e20*np.eye(self.dim_augment_err *self.N)
|
||
|
if Q is None:
|
||
|
return x, P
|
||
|
else:
|
||
|
Q = np.pad(Q, [(0, self.N*self.dim_augment_err), (0, self.N*self.dim_augment_err)], mode='constant')
|
||
|
return x, P, Q
|
||
|
|
||
|
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
|
||
|
if covs_diag is not None:
|
||
|
P = np.diag(covs_diag)
|
||
|
elif covs is not None:
|
||
|
P = covs
|
||
|
else:
|
||
|
P = self.filter.covs()
|
||
|
state, P = self.pad_augmented(state, P)
|
||
|
self.filter.init_state(state, P, filter_time)
|
||
|
|
||
|
def predict_and_observe(self, t, kind, data):
|
||
|
if len(data) > 0:
|
||
|
data = np.atleast_2d(data)
|
||
|
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
|
||
|
r = self.predict_and_update_odo_trans(data, t, kind)
|
||
|
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
|
||
|
r = self.predict_and_update_odo_rot(data, t, kind)
|
||
|
elif kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
|
||
|
r = self.predict_and_update_pseudorange(data, t, kind)
|
||
|
elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
|
||
|
r = self.predict_and_update_pseudorange_rate(data, t, kind)
|
||
|
elif kind == ObservationKind.ORB_POINT:
|
||
|
r = self.predict_and_update_orb(data, t, kind)
|
||
|
elif kind == ObservationKind.ORB_FEATURES:
|
||
|
r = self.predict_and_update_orb_features(data, t, kind)
|
||
|
elif kind == ObservationKind.MSCKF_TEST:
|
||
|
r = self.predict_and_update_msckf_test(data, t, kind)
|
||
|
elif kind == ObservationKind.FEATURE_TRACK_TEST:
|
||
|
r = self.predict_and_update_feature_track_test(data, t, kind)
|
||
|
elif kind == ObservationKind.ODOMETRIC_SPEED:
|
||
|
r = self.predict_and_update_odo_speed(data, t, kind)
|
||
|
else:
|
||
|
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
|
||
|
# Normalize quats
|
||
|
quat_norm = np.linalg.norm(self.filter.x[3:7,0])
|
||
|
# Should not continue if the quats behave this weirdly
|
||
|
if not 0.1 < quat_norm < 10:
|
||
|
raise RuntimeError("Sir! The filter's gone all wobbly!")
|
||
|
self.filter.x[3:7,0] = self.filter.x[3:7,0]/quat_norm
|
||
|
for i in range(self.N):
|
||
|
d1 = self.dim_main
|
||
|
d3 = self.dim_augment
|
||
|
self.filter.x[d1+d3*i+3:d1+d3*i+7] /= np.linalg.norm(self.filter.x[d1+i*d3 + 3:d1+i*d3 + 7,0])
|
||
|
return r
|
||
|
|
||
|
def get_R(self, kind, n):
|
||
|
obs_noise = self.obs_noise[kind]
|
||
|
dim = obs_noise.shape[0]
|
||
|
R = np.zeros((n, dim, dim))
|
||
|
for i in range(n):
|
||
|
R[i,:,:] = obs_noise
|
||
|
return R
|
||
|
|
||
|
def predict_and_update_pseudorange(self, meas, t, kind):
|
||
|
R = np.zeros((len(meas), 1, 1))
|
||
|
sat_pos_freq = np.zeros((len(meas), 4))
|
||
|
z = np.zeros((len(meas), 1))
|
||
|
for i, m in enumerate(meas):
|
||
|
z_i, R_i, sat_pos_freq_i = parse_pr(m)
|
||
|
sat_pos_freq[i,:] = sat_pos_freq_i
|
||
|
z[i,:] = z_i
|
||
|
R[i,:,:] = R_i
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
|
||
|
|
||
|
|
||
|
def predict_and_update_pseudorange_rate(self, meas, t, kind):
|
||
|
R = np.zeros((len(meas), 1, 1))
|
||
|
z = np.zeros((len(meas), 1))
|
||
|
sat_pos_vel = np.zeros((len(meas), 6))
|
||
|
for i, m in enumerate(meas):
|
||
|
z_i, R_i, sat_pos_vel_i = parse_prr(m)
|
||
|
sat_pos_vel[i] = sat_pos_vel_i
|
||
|
R[i,:,:] = R_i
|
||
|
z[i, :] = z_i
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
|
||
|
|
||
|
def predict_and_update_orb(self, orb, t, kind):
|
||
|
true_pos = orb[:,2:]
|
||
|
z = orb[:,:2]
|
||
|
R = np.zeros((len(orb), 2, 2))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag([10**2, 10**2])
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R, true_pos)
|
||
|
|
||
|
def predict_and_update_odo_speed(self, speed, t, kind):
|
||
|
z = np.array(speed)
|
||
|
R = np.zeros((len(speed), 1, 1))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag([0.2**2])
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
||
|
|
||
|
def predict_and_update_odo_trans(self, trans, t, kind):
|
||
|
z = trans[:,:3]
|
||
|
R = np.zeros((len(trans), 3, 3))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag(trans[i,3:]**2)
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
||
|
|
||
|
def predict_and_update_odo_rot(self, rot, t, kind):
|
||
|
z = rot[:,:3]
|
||
|
R = np.zeros((len(rot), 3, 3))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag(rot[i,3:]**2)
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
||
|
|
||
|
def predict_and_update_orb_features(self, tracks, t, kind):
|
||
|
k = 2*(self.N+1)
|
||
|
R = np.zeros((len(tracks), k, k))
|
||
|
z = np.zeros((len(tracks), k))
|
||
|
ecef_pos = np.zeros((len(tracks), 3))
|
||
|
ecef_pos[:] = np.nan
|
||
|
poses = self.x[self.dim_main:].reshape((-1,7))
|
||
|
times = tracks.reshape((len(tracks),self.N+1, 4))[:,:,0]
|
||
|
good_counter = 0
|
||
|
if times.any() and np.allclose(times[0,:-1], self.filter.augment_times, rtol=1e-6):
|
||
|
for i, track in enumerate(tracks):
|
||
|
img_positions = track.reshape((self.N+1, 4))[:,2:]
|
||
|
# TODO not perfect as last pose not used
|
||
|
#img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i])
|
||
|
ecef_pos[i] = self.computer.compute_pos(poses, img_positions[:-1])
|
||
|
z[i] = img_positions.flatten()
|
||
|
R[i,:,:] = np.diag([0.005**2]*(k))
|
||
|
if np.isfinite(ecef_pos[i][0]):
|
||
|
good_counter += 1
|
||
|
if good_counter > self.max_tracks:
|
||
|
break
|
||
|
good_idxs = np.all(np.isfinite(ecef_pos),axis=1)
|
||
|
# have to do some weird stuff here to keep
|
||
|
# to have the observations input from mesh3d
|
||
|
# consistent with the outputs of the filter
|
||
|
# Probably should be replaced, not sure how.
|
||
|
ret = self.filter.predict_and_update_batch(t, kind, z[good_idxs], R[good_idxs], ecef_pos[good_idxs], augment=True)
|
||
|
if ret is None:
|
||
|
return
|
||
|
y_full = np.zeros((z.shape[0], z.shape[1] - 3))
|
||
|
#print sum(good_idxs), len(tracks)
|
||
|
if sum(good_idxs) > 0:
|
||
|
y_full[good_idxs] = np.array(ret[6])
|
||
|
ret = ret[:6] + (y_full, z, ecef_pos)
|
||
|
return ret
|
||
|
|
||
|
def predict_and_update_msckf_test(self, test_data, t, kind):
|
||
|
assert self.N > 0
|
||
|
z = test_data
|
||
|
R = np.zeros((len(test_data), len(z[0]), len(z[0])))
|
||
|
ecef_pos = [self.x[:3]]
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag([0.1**2]*len(z[0]))
|
||
|
ret = self.filter.predict_and_update_batch(t, kind, z, R, ecef_pos)
|
||
|
self.filter.augment()
|
||
|
return ret
|
||
|
|
||
|
def maha_test_pseudorange(self, x, P, meas, kind, maha_thresh=.3):
|
||
|
bools = []
|
||
|
for i, m in enumerate(meas):
|
||
|
z, R, sat_pos_freq = parse_pr(m)
|
||
|
bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_freq, maha_thresh=maha_thresh))
|
||
|
return np.array(bools)
|
||
|
|
||
|
def maha_test_pseudorange_rate(self, x, P, meas, kind, maha_thresh=.999):
|
||
|
bools = []
|
||
|
for i, m in enumerate(meas):
|
||
|
z, R, sat_pos_vel = parse_prr(m)
|
||
|
bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_vel, maha_thresh=maha_thresh))
|
||
|
return np.array(bools)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
LocKalman(N=4)
|