openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

324 lines
11 KiB

#!/usr/bin/env python3
import importlib
import math
from collections import deque
from typing import Optional, Dict, Any
import capnp
from cereal import messaging, log, car
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.common.realtime import DT_CTRL, Ratekeeper, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.common.simple_kalman import KF1D
# Default lead acceleration decay set to 50% at 1s
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED, ACCEL = 0, 1 # Kalman filter states enum
# stationary qualification parameters
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
class KalmanParams:
def __init__(self, dt: float):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
self.A = [[1.0, dt], [0.0, 1.0]]
self.C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [dt * 0.01 for dt in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
class Track:
def __init__(self, identifier: int, v_lead: float, kalman_params: KalmanParams):
self.identifier = identifier
self.cnt = 0
self.aLeadTau = _LEAD_ACCEL_TAU
self.K_A = kalman_params.A
self.K_C = kalman_params.C
self.K_K = kalman_params.K
self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float):
# relative values, copy
self.dRel = d_rel # LONG_DIST
self.yRel = y_rel # -LAT_DIST
self.vRel = v_rel # REL_SPEED
self.vLead = v_lead
self.measured = measured # measured or estimate
# computed velocity and accelerations
if self.cnt > 0:
self.kf.update(self.vLead)
self.vLeadK = float(self.kf.x[SPEED][0])
self.aLeadK = float(self.kf.x[ACCEL][0])
# Learn if constant acceleration
if abs(self.aLeadK) < 0.5:
self.aLeadTau = _LEAD_ACCEL_TAU
else:
self.aLeadTau *= 0.9
self.cnt += 1
def get_key_for_cluster(self):
# Weigh y higher since radar is inaccurate in this dimension
return [self.dRel, self.yRel*2, self.vRel]
def reset_a_lead(self, aLeadK: float, aLeadTau: float):
self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
self.aLeadK = aLeadK
self.aLeadTau = aLeadTau
def get_RadarState(self, model_prob: float = 0.0):
return {
"dRel": float(self.dRel),
"yRel": float(self.yRel),
"vRel": float(self.vRel),
"vLead": float(self.vLead),
"vLeadK": float(self.vLeadK),
"aLeadK": float(self.aLeadK),
"aLeadTau": float(self.aLeadTau),
"status": True,
"fcw": self.is_potential_fcw(model_prob),
"modelProb": model_prob,
"radar": True,
"radarTrackId": self.identifier,
}
def potential_low_speed_lead(self, v_ego: float):
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
def is_potential_fcw(self, model_prob: float):
return model_prob > .9
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def laplacian_pdf(x: float, mu: float, b: float):
b = max(b, 1e-4)
return math.exp(-abs(x-mu)/b)
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: Dict[int, Track]):
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
def prob(c):
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])
# This is isn't exactly right, but good heuristic
return prob_d * prob_y * prob_v
track = max(tracks.values(), key=prob)
# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs(track.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
vel_sane = (abs(track.vRel + v_ego - lead.v[0]) < 10) or (v_ego + track.vRel > 3)
if dist_sane and vel_sane:
return track
else:
return None
def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
return {
"dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
"yRel": float(-lead_msg.y[0]),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLeadK": 0.0,
"aLeadTau": 0.3,
"fcw": False,
"modelProb": float(lead_msg.prob),
"status": True,
"radar": False,
"radarTrackId": -1,
}
def get_lead(v_ego: float, ready: bool, tracks: Dict[int, Track], lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> Dict[str, Any]:
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks)
else:
track = None
lead_dict = {'status': False}
if track is not None:
lead_dict = track.get_RadarState(lead_msg.prob)
elif (track is None) and ready and (lead_msg.prob > .5):
lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
lead_dict = closest_track.get_RadarState()
return lead_dict
class RadarD:
def __init__(self, radar_ts: float, delay: int = 0):
self.current_time = 0.0
self.tracks: Dict[int, Track] = {}
self.kalman_params = KalmanParams(radar_ts)
self.v_ego = 0.0
self.v_ego_hist = deque([0.0], maxlen=delay+1)
self.last_v_ego_frame = -1
self.radar_state: Optional[capnp._DynamicStructBuilder] = None
self.radar_state_valid = False
self.ready = False
def update(self, sm: messaging.SubMaster, rr: Optional[car.RadarData]):
self.ready = sm.seen['modelV2']
self.current_time = 1e-9*max(sm.logMonoTime.values())
radar_points = []
radar_errors = []
if rr is not None:
radar_points = rr.points
radar_errors = rr.errors
if sm.recv_frame['carState'] != self.last_v_ego_frame:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
self.last_v_ego_frame = sm.recv_frame['carState']
ar_pts = {}
for pt in radar_points:
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
# *** remove missing points from meta data ***
for ids in list(self.tracks.keys()):
if ids not in ar_pts:
self.tracks.pop(ids, None)
# *** compute the tracks ***
for ids in ar_pts:
rpt = ar_pts[ids]
# align v_ego by a fixed time to align it with the radar measurement
v_lead = rpt[2] + self.v_ego_hist[0]
# create the track if it doesn't exist or it's a new track
if ids not in self.tracks:
self.tracks[ids] = Track(ids, v_lead, self.kalman_params)
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
# *** publish radarState ***
self.radar_state_valid = sm.all_checks() and len(radar_errors) == 0
self.radar_state = log.RadarState.new_message()
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
self.radar_state.radarErrors = list(radar_errors)
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
if len(sm['modelV2'].temporalPose.trans):
model_v_ego = sm['modelV2'].temporalPose.trans[0]
else:
model_v_ego = self.v_ego
long planner: run when using stock longitudinal (#25017) * Squashed commit of the following: commit e27a5b4e2bfeab4e6a47440b1d4eb180ee4acf49 Author: Shane Smiskol <shane@smiskol.com> Date: Fri Jul 1 14:10:06 2022 -0700 remove this test remove this test commit c3c10af82222ea4641d94c53a3a07b486cca8452 Author: Shane Smiskol <shane@smiskol.com> Date: Fri Jul 1 14:08:15 2022 -0700 only planner changes commit 50e0f1d8704c15acfce8987faf3515c99e8af4f4 Merge: e088fde67 fcc5b3d70 Author: Shane Smiskol <shane@smiskol.com> Date: Fri Jul 1 14:05:36 2022 -0700 Merge remote-tracking branch 'upstream/master' into enable-planner2 commit e088fde67edcc32ccfeea23b4ae9e44845240429 Author: Shane Smiskol <shane@smiskol.com> Date: Thu Jun 30 13:58:38 2022 -0700 no walrus commit b7b425e530e949b9cc427833562473cc241d1367 Merge: f8634266b c49f997be Author: Shane Smiskol <shane@smiskol.com> Date: Thu Jun 30 13:54:30 2022 -0700 Merge remote-tracking branch 'upstream/master' into enable-planner commit f8634266b49c3f692b255e6cfac66cccc438ae20 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 29 16:07:35 2022 -0700 stricter test, speeds[-1] is 0.14 when starting here commit c9e446ad2183feba9d03ee39f9801091ab791c08 Merge: e6c4106ea 879a7c320 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 29 16:01:32 2022 -0700 Merge remote-tracking branch 'upstream/master' into enable-planner commit e6c4106ea185c68a6c7b3d59d5bde664df8bdc9c Author: Shane Smiskol <shane@smiskol.com> Date: Sat Jun 25 03:28:41 2022 -0700 fix test commit 0520c7f21613b57b804e08a8e8d10950ac059074 Author: Shane Smiskol <shane@smiskol.com> Date: Sat Jun 25 03:26:16 2022 -0700 add test for resuming commit 04db5f80bff4a002f5241765a625d7cf57b74364 Merge: e23b37d3f d8bfe2f00 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 22 20:15:50 2022 -0700 Merge remote-tracking branch 'upstream/master' into enable-planner commit e23b37d3fe8dd3dd07b46a32a4f0564fabade1aa Author: Shane Smiskol <shane@smiskol.com> Date: Tue Jun 21 12:46:04 2022 -0700 0.1 should be pretty safe commit e7dc3960da3d713753f28732f50dbd25811fad28 Author: Shane Smiskol <shane@smiskol.com> Date: Tue Jun 21 12:39:30 2022 -0700 try 0.2 commit ff0597ec92a0d2c52915316961ec123b0183c5cf Author: Shane Smiskol <shane@smiskol.com> Date: Tue Jun 21 11:34:00 2022 -0700 Always run planner if not opLong commit 13997c55271f79fd3ca62d6db45ec3790b09aa60 Merge: d2f51ee55 95d8517a8 Author: Shane Smiskol <shane@smiskol.com> Date: Tue Jun 21 11:29:22 2022 -0700 Merge remote-tracking branch 'upstream/master' into enable-planner commit d2f51ee55fd3bde38275371e76714d7741bc6f6b Author: Shane Smiskol <shane@smiskol.com> Date: Tue Jun 21 11:27:45 2022 -0700 same for non-HDA2 commit 6a63bd60f09a0abd9185049cd173100d3ef6fefa Author: Shane Smiskol <shane@smiskol.com> Date: Mon Jun 20 23:37:07 2022 -0700 mazda: ensure no resume if cancelling commit 5771cdecab7999765d9f5203c75a67f1555cf975 Author: Shane Smiskol <shane@smiskol.com> Date: Mon Jun 20 23:27:58 2022 -0700 maintain original button msg rate commit 6c1fe0606fd0a0819ffeaac92526e43b3110f2f4 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 15 23:45:26 2022 -0700 rename to resume commit 00b1df652f1679137c769f9db61eed7dd14e1542 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 15 21:57:54 2022 -0700 remove comments commit 325ea9bbd5e0dd946961ede0cdcc446ad5e5bbdb Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 15 21:56:20 2022 -0700 vw commit 2c9061042b36fe1d6b029a4216655be69a980849 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 15 21:54:37 2022 -0700 do rest but vw commit 3dc51f663dfdd4ea1fd72d239bcd5db8c7da4b47 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 15 16:34:48 2022 -0700 only spam resume when future is > vEgoStarting commit 5f32cd1fcb402bee425d866a9dc76b6feea3d241 Author: Shane Smiskol <shane@smiskol.com> Date: Wed Jun 15 16:09:43 2022 -0700 always log leads, we hide them in ui * reset when not CS.enabled remove comment * update refs
3 years ago
leads_v3 = sm['modelV2'].leadsV3
if len(leads_v3) > 1:
self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
def publish(self, pm: messaging.PubMaster, lag_ms: float):
assert self.radar_state is not None
radar_msg = messaging.new_message("radarState")
radar_msg.valid = self.radar_state_valid
radar_msg.radarState = self.radar_state
radar_msg.radarState.cumLagMs = lag_ms
pm.send("radarState", radar_msg)
# publish tracks for UI debugging (keep last)
tracks_msg = messaging.new_message('liveTracks', len(self.tracks))
tracks_msg.valid = self.radar_state_valid
for index, tid in enumerate(sorted(self.tracks.keys())):
tracks_msg.liveTracks[index] = {
"trackId": tid,
"dRel": float(self.tracks[tid].dRel),
"yRel": float(self.tracks[tid].yRel),
"vRel": float(self.tracks[tid].vRel),
}
pm.send('liveTracks', tracks_msg)
# fuses camera and radar data for best lead detection
def main():
config_realtime_process(5, Priority.CTRL_LOW)
# wait for stats about the car to come in from controls
cloudlog.info("radard is waiting for CarParams")
with car.CarParams.from_bytes(Params().get("CarParams", block=True)) as msg:
CP = msg
cloudlog.info("radard got CarParams")
# import the radar from the fingerprint
cloudlog.info("radard is importing %s", CP.carName)
RadarInterface = importlib.import_module(f'selfdrive.car.{CP.carName}.radar_interface').RadarInterface
# *** setup messaging
can_sock = messaging.sub_sock('can')
sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
pm = messaging.PubMaster(['radarState', 'liveTracks'])
RI = RadarInterface(CP)
rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
RD = RadarD(CP.radarTimeStep, RI.delay)
while 1:
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
rr = RI.update(can_strings)
sm.update(0)
if rr is None:
continue
RD.update(sm, rr)
RD.publish(pm, -rk.remaining*1000.0)
rk.monitor_time()
if __name__ == "__main__":
main()