from common . numpy_fast import clip
from cereal import car
class MPC_COST_LAT :
PATH = 1.0
LANE = 3.0
HEADING = 1.0
STEER_RATE = 1.0
class MPC_COST_LONG :
TTC = 5.0
DISTANCE = 0.1
ACCELERATION = 10.0
JERK = 20.0
class EventTypes :
ENABLE = ' enable '
PRE_ENABLE = ' preEnable '
NO_ENTRY = ' noEntry '
WARNING = ' warning '
USER_DISABLE = ' userDisable '
SOFT_DISABLE = ' softDisable '
IMMEDIATE_DISABLE = ' immediateDisable '
PERMANENT = ' permanent '
def create_event ( name , types ) :
event = car . CarEvent . new_message ( )
event . name = name
for t in types :
setattr ( event , t , True )
return event
def get_events ( events , types ) :
out = [ ]
for e in events :
for t in types :
if getattr ( e , t ) :
out . append ( e . name )
return out
def rate_limit ( new_value , last_value , dw_step , up_step ) :
return clip ( new_value , last_value + dw_step , last_value + up_step )
def learn_angle_offset ( lateral_control , v_ego , angle_offset , c_poly , c_prob , angle_steers , steer_override ) :
# simple integral controller that learns how much steering offset to put to have the car going straight
# while being in the middle of the lane
min_offset = - 5. # deg
max_offset = 5. # deg
alpha = 1. / 36000. # correct by 1 deg in 2 mins, at 30m/s, with 50cm of error, at 20Hz
min_learn_speed = 1.
# learn less at low speed or when turning
slow_factor = 1. / ( 1. + 0.02 * abs ( angle_steers ) * v_ego )
alpha_v = alpha * c_prob * ( max ( v_ego - min_learn_speed , 0. ) ) * slow_factor
# only learn if lateral control is active and if driver is not overriding:
if lateral_control and not steer_override :
angle_offset + = c_poly [ 3 ] * alpha_v
angle_offset = clip ( angle_offset , min_offset , max_offset )
return angle_offset