import numpy as np
import math
from common . numpy_fast import interp
_K_CURV_V = [ 1. , 0.6 ]
_K_CURV_BP = [ 0. , 0.002 ]
# lane width http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
_LANE_WIDTH_V = [ 3. , 3.8 ]
# break points of speed
_LANE_WIDTH_BP = [ 0. , 31. ]
def calc_d_lookahead ( v_ego , d_poly ) :
# this function computes how far too look for lateral control
# howfar we look ahead is function of speed and how much curvy is the path
offset_lookahead = 1.
k_lookahead = 7.
# integrate abs value of second derivative of poly to get a measure of path curvature
pts_len = 50. # m
if len ( d_poly ) > 0 :
pts = np . polyval ( [ 6 * d_poly [ 0 ] , 2 * d_poly [ 1 ] ] , np . arange ( 0 , pts_len ) )
else :
pts = 0.
curv = np . sum ( np . abs ( pts ) ) / pts_len
k_curv = interp ( curv , _K_CURV_BP , _K_CURV_V )
# sqrt on speed is needed to keep, for a given curvature, the y_des
# proportional to speed. Indeed, y_des is prop to d_lookahead^2
# 36m at 25m/s
d_lookahead = offset_lookahead + math . sqrt ( max ( v_ego , 0 ) ) * k_lookahead * k_curv
return d_lookahead
def calc_lookahead_offset ( v_ego , angle_steers , d_lookahead , VM , angle_offset ) :
# this function returns the lateral offset given the steering angle, speed and the lookahead distance
sa = math . radians ( angle_steers - angle_offset )
curvature = VM . calc_curvature ( sa , v_ego )
# clip is to avoid arcsin NaNs due to too sharp turns
y_actual = d_lookahead * np . tan ( np . arcsin ( np . clip ( d_lookahead * curvature , - 0.999 , 0.999 ) ) / 2. )
return y_actual , curvature
def calc_desired_steer_angle ( v_ego , y_des , d_lookahead , VM , angle_offset ) :
# inverse of the above function
curvature = np . sin ( np . arctan ( y_des / d_lookahead ) * 2. ) / d_lookahead
steer_des = math . degrees ( VM . get_steer_from_curvature ( curvature , v_ego ) ) + angle_offset
return steer_des , curvature
def compute_path_pinv ( l = 50 ) :
deg = 3
x = np . arange ( l * 1.0 )
X = np . vstack ( tuple ( x * * n for n in range ( deg , - 1 , - 1 ) ) ) . T
pinv = np . linalg . pinv ( X )
return pinv
def model_polyfit ( points , path_pinv ) :
return np . dot ( path_pinv , map ( float , points ) )
def calc_desired_path ( l_poly ,
r_poly ,
p_poly ,
l_prob ,
r_prob ,
p_prob ,
speed ,
lane_width = None ) :
# this function computes the poly for the center of the lane, averaging left and right polys
if lane_width is None :
lane_width = interp ( speed , _LANE_WIDTH_BP , _LANE_WIDTH_V )
# lanes in US are ~3.6m wide
half_lane_poly = np . array ( [ 0. , 0. , 0. , lane_width / 2. ] )
if l_prob + r_prob > 0.01 :
c_poly = ( ( l_poly - half_lane_poly ) * l_prob +
( r_poly + half_lane_poly ) * r_prob ) / ( l_prob + r_prob )
c_prob = l_prob + r_prob - l_prob * r_prob
else :
c_poly = np . zeros ( 4 )
c_prob = 0.
p_weight = 1. # predicted path weight relatively to the center of the lane
d_poly = list ( ( c_poly * c_prob + p_poly * p_prob * p_weight ) / ( c_prob + p_prob * p_weight ) )
return d_poly , c_poly , c_prob