#
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
import os
from casadi import *
from . utils import ALLOWED_CASADI_VERSIONS , is_empty , casadi_version_warning
def generate_c_code_gnsf ( model , opts ) :
casadi_version = CasadiMeta . version ( )
casadi_opts = dict ( mex = False , casadi_int = ' int ' , casadi_real = ' double ' )
if casadi_version not in ( ALLOWED_CASADI_VERSIONS ) :
casadi_version_warning ( casadi_version )
model_name = model . name
code_export_dir = opts [ " code_export_directory " ]
# set up directory
if not os . path . exists ( code_export_dir ) :
os . makedirs ( code_export_dir )
cwd = os . getcwd ( )
os . chdir ( code_export_dir )
model_dir = model_name + ' _model '
if not os . path . exists ( model_dir ) :
os . mkdir ( model_dir )
model_dir_location = os . path . join ( ' . ' , model_dir )
os . chdir ( model_dir_location )
# obtain gnsf dimensions
get_matrices_fun = model . get_matrices_fun
phi_fun = model . phi_fun
size_gnsf_A = get_matrices_fun . size_out ( 0 )
gnsf_nx1 = size_gnsf_A [ 1 ]
gnsf_nz1 = size_gnsf_A [ 0 ] - size_gnsf_A [ 1 ]
gnsf_nuhat = max ( phi_fun . size_in ( 1 ) )
gnsf_ny = max ( phi_fun . size_in ( 0 ) )
gnsf_nout = max ( phi_fun . size_out ( 0 ) )
# set up expressions
# if the model uses MX because of cost/constraints
# the DAE can be exported as SX -> detect GNSF in Matlab
# -> evaluated SX GNSF functions with MX.
u = model . u
if isinstance ( u , casadi . MX ) :
symbol = MX . sym
else :
symbol = SX . sym
y = symbol ( " y " , gnsf_ny , 1 )
uhat = symbol ( " uhat " , gnsf_nuhat , 1 )
p = model . p
x1 = symbol ( " gnsf_x1 " , gnsf_nx1 , 1 )
x1dot = symbol ( " gnsf_x1dot " , gnsf_nx1 , 1 )
z1 = symbol ( " gnsf_z1 " , gnsf_nz1 , 1 )
dummy = symbol ( " gnsf_dummy " , 1 , 1 )
empty_var = symbol ( " gnsf_empty_var " , 0 , 0 )
## generate C code
fun_name = model_name + ' _gnsf_phi_fun '
phi_fun_ = Function ( fun_name , [ y , uhat , p ] , [ phi_fun ( y , uhat , p ) ] )
phi_fun_ . generate ( fun_name , casadi_opts )
fun_name = model_name + ' _gnsf_phi_fun_jac_y '
phi_fun_jac_y = model . phi_fun_jac_y
phi_fun_jac_y_ = Function ( fun_name , [ y , uhat , p ] , phi_fun_jac_y ( y , uhat , p ) )
phi_fun_jac_y_ . generate ( fun_name , casadi_opts )
fun_name = model_name + ' _gnsf_phi_jac_y_uhat '
phi_jac_y_uhat = model . phi_jac_y_uhat
phi_jac_y_uhat_ = Function ( fun_name , [ y , uhat , p ] , phi_jac_y_uhat ( y , uhat , p ) )
phi_jac_y_uhat_ . generate ( fun_name , casadi_opts )
fun_name = model_name + ' _gnsf_f_lo_fun_jac_x1k1uz '
f_lo_fun_jac_x1k1uz = model . f_lo_fun_jac_x1k1uz
f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz ( x1 , x1dot , z1 , u , p )
# avoid codegeneration issue
if not isinstance ( f_lo_fun_jac_x1k1uz_eval , tuple ) and is_empty ( f_lo_fun_jac_x1k1uz_eval ) :
f_lo_fun_jac_x1k1uz_eval = [ empty_var ]
f_lo_fun_jac_x1k1uz_ = Function ( fun_name , [ x1 , x1dot , z1 , u , p ] ,
f_lo_fun_jac_x1k1uz_eval )
f_lo_fun_jac_x1k1uz_ . generate ( fun_name , casadi_opts )
fun_name = model_name + ' _gnsf_get_matrices_fun '
get_matrices_fun_ = Function ( fun_name , [ dummy ] , get_matrices_fun ( 1 ) )
get_matrices_fun_ . generate ( fun_name , casadi_opts )
# remove fields for json dump
del model . phi_fun
del model . phi_fun_jac_y
del model . phi_jac_y_uhat
del model . f_lo_fun_jac_x1k1uz
del model . get_matrices_fun
os . chdir ( cwd )
return