You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
3.2 KiB
80 lines
3.2 KiB
3 years ago
|
import math
|
||
|
from selfdrive.controls.lib.pid import PIDController
|
||
|
from common.numpy_fast import interp
|
||
|
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
|
||
|
from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
|
||
|
from cereal import log
|
||
|
|
||
|
# At higher speeds (25+mph) we can assume:
|
||
|
# Lateral acceleration achieved by a specific car correlates to
|
||
|
# torque applied to the steering rack. It does not correlate to
|
||
|
# wheel slip, or to speed.
|
||
|
|
||
|
# This controller applies torque to achieve desired lateral
|
||
|
# accelerations. To compensate for the low speed effects we
|
||
|
# use a LOW_SPEED_FACTOR in the error. Additionally there is
|
||
|
# friction in the steering wheel that needs to be overcome to
|
||
|
# move it at all, this is compensated for too.
|
||
|
|
||
|
|
||
|
LOW_SPEED_FACTOR = 200
|
||
|
JERK_THRESHOLD = 0.2
|
||
|
|
||
|
|
||
|
class LatControlTorque(LatControl):
|
||
|
def __init__(self, CP, CI):
|
||
|
super().__init__(CP, CI)
|
||
|
self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki,
|
||
|
k_f=CP.lateralTuning.torque.kf, pos_limit=1.0, neg_limit=-1.0)
|
||
|
self.get_steer_feedforward = CI.get_steer_feedforward_function()
|
||
|
self.steer_max = 1.0
|
||
|
self.pid.pos_limit = self.steer_max
|
||
|
self.pid.neg_limit = -self.steer_max
|
||
|
self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle
|
||
|
self.friction = CP.lateralTuning.torque.friction
|
||
|
|
||
|
def reset(self):
|
||
|
super().reset()
|
||
|
self.pid.reset()
|
||
|
|
||
|
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
|
||
|
pid_log = log.ControlsState.LateralTorqueState.new_message()
|
||
|
|
||
|
if CS.vEgo < MIN_STEER_SPEED or not active:
|
||
|
output_torque = 0.0
|
||
|
pid_log.active = False
|
||
|
self.pid.reset()
|
||
|
else:
|
||
|
if self.use_steering_angle:
|
||
|
actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
|
||
|
else:
|
||
|
actual_curvature = llk.angularVelocityCalibrated.value[2] / CS.vEgo
|
||
|
desired_lateral_accel = desired_curvature * CS.vEgo**2
|
||
|
desired_lateral_jerk = desired_curvature_rate * CS.vEgo**2
|
||
|
actual_lateral_accel = actual_curvature * CS.vEgo**2
|
||
|
|
||
|
setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature
|
||
|
measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature
|
||
|
error = setpoint - measurement
|
||
|
pid_log.error = error
|
||
|
|
||
|
ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY
|
||
|
output_torque = self.pid.update(error,
|
||
|
override=CS.steeringPressed, feedforward=ff,
|
||
|
speed=CS.vEgo,
|
||
|
freeze_integrator=CS.steeringRateLimited)
|
||
|
|
||
|
friction_compensation = interp(desired_lateral_jerk, [-JERK_THRESHOLD, JERK_THRESHOLD], [-self.friction, self.friction])
|
||
|
output_torque += friction_compensation
|
||
|
|
||
|
pid_log.active = True
|
||
|
pid_log.p = self.pid.p
|
||
|
pid_log.i = self.pid.i
|
||
|
pid_log.d = self.pid.d
|
||
|
pid_log.f = self.pid.f
|
||
|
pid_log.output = -output_torque
|
||
|
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS)
|
||
|
|
||
|
#TODO left is positive in this convention
|
||
|
return -output_torque, 0.0, pid_log
|