openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

525 lines
19 KiB

#include "ublox_msg.h"
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <unordered_map>
#include <utility>
#include "common/swaglog.h"
const double gpsPi = 3.1415926535898;
#define UBLOX_MSG_SIZE(hdr) (*(uint16_t *)&hdr[4])
inline static bool bit_to_bool(uint8_t val, int shifts) {
return (bool)(val & (1 << shifts));
}
inline int UbloxMsgParser::needed_bytes() {
// Msg header incomplete?
if(bytes_in_parse_buf < ublox::UBLOX_HEADER_SIZE)
return ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE - bytes_in_parse_buf;
uint16_t needed = UBLOX_MSG_SIZE(msg_parse_buf) + ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE;
// too much data
if(needed < (uint16_t)bytes_in_parse_buf)
return -1;
return needed - (uint16_t)bytes_in_parse_buf;
}
inline bool UbloxMsgParser::valid_cheksum() {
uint8_t ck_a = 0, ck_b = 0;
for(int i = 2; i < bytes_in_parse_buf - ublox::UBLOX_CHECKSUM_SIZE;i++) {
ck_a = (ck_a + msg_parse_buf[i]) & 0xFF;
ck_b = (ck_b + ck_a) & 0xFF;
}
if(ck_a != msg_parse_buf[bytes_in_parse_buf - 2]) {
LOGD("Checksum a mismatch: %02X, %02X", ck_a, msg_parse_buf[6]);
return false;
}
if(ck_b != msg_parse_buf[bytes_in_parse_buf - 1]) {
LOGD("Checksum b mismatch: %02X, %02X", ck_b, msg_parse_buf[7]);
return false;
}
return true;
}
inline bool UbloxMsgParser::valid() {
return bytes_in_parse_buf >= ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE &&
needed_bytes() == 0 && valid_cheksum();
}
inline bool UbloxMsgParser::valid_so_far() {
if(bytes_in_parse_buf > 0 && msg_parse_buf[0] != ublox::PREAMBLE1) {
return false;
}
if(bytes_in_parse_buf > 1 && msg_parse_buf[1] != ublox::PREAMBLE2) {
return false;
}
if(needed_bytes() == 0 && !valid()) {
return false;
}
return true;
}
bool UbloxMsgParser::add_data(float log_time, const uint8_t *incoming_data, uint32_t incoming_data_len, size_t &bytes_consumed) {
last_log_time = log_time;
int needed = needed_bytes();
if(needed > 0) {
bytes_consumed = std::min((uint32_t)needed, incoming_data_len );
// Add data to buffer
memcpy(msg_parse_buf + bytes_in_parse_buf, incoming_data, bytes_consumed);
bytes_in_parse_buf += bytes_consumed;
} else {
bytes_consumed = incoming_data_len;
}
// Validate msg format, detect invalid header and invalid checksum.
while(!valid_so_far() && bytes_in_parse_buf != 0) {
// Corrupted msg, drop a byte.
bytes_in_parse_buf -= 1;
if(bytes_in_parse_buf > 0)
memmove(&msg_parse_buf[0], &msg_parse_buf[1], bytes_in_parse_buf);
}
// There is redundant data at the end of buffer, reset the buffer.
if(needed_bytes() == -1) {
bytes_in_parse_buf = 0;
}
return valid();
}
std::pair<std::string, kj::Array<capnp::word>> UbloxMsgParser::gen_msg() {
std::string dat = data();
kaitai::kstream stream(dat);
ubx_t ubx_message(&stream);
auto body = ubx_message.body();
switch (ubx_message.msg_type()) {
case 0x0107:
return {"gpsLocationExternal", gen_nav_pvt(static_cast<ubx_t::nav_pvt_t*>(body))};
case 0x0213: // UBX-RXM-SFRB (Broadcast Navigation Data Subframe)
return {"ubloxGnss", gen_rxm_sfrbx(static_cast<ubx_t::rxm_sfrbx_t*>(body))};
case 0x0215: // UBX-RXM-RAW (Multi-GNSS Raw Measurement Data)
return {"ubloxGnss", gen_rxm_rawx(static_cast<ubx_t::rxm_rawx_t*>(body))};
case 0x0a09:
return {"ubloxGnss", gen_mon_hw(static_cast<ubx_t::mon_hw_t*>(body))};
case 0x0a0b:
return {"ubloxGnss", gen_mon_hw2(static_cast<ubx_t::mon_hw2_t*>(body))};
case 0x0135:
return {"ubloxGnss", gen_nav_sat(static_cast<ubx_t::nav_sat_t*>(body))};
default:
LOGE("Unknown message type %x", ubx_message.msg_type());
return {"ubloxGnss", kj::Array<capnp::word>()};
}
}
kj::Array<capnp::word> UbloxMsgParser::gen_nav_pvt(ubx_t::nav_pvt_t *msg) {
MessageBuilder msg_builder;
auto gpsLoc = msg_builder.initEvent().initGpsLocationExternal();
gpsLoc.setSource(cereal::GpsLocationData::SensorSource::UBLOX);
gpsLoc.setFlags(msg->flags());
gpsLoc.setLatitude(msg->lat() * 1e-07);
gpsLoc.setLongitude(msg->lon() * 1e-07);
gpsLoc.setAltitude(msg->height() * 1e-03);
gpsLoc.setSpeed(msg->g_speed() * 1e-03);
gpsLoc.setBearingDeg(msg->head_mot() * 1e-5);
gpsLoc.setAccuracy(msg->h_acc() * 1e-03);
std::tm timeinfo = std::tm();
timeinfo.tm_year = msg->year() - 1900;
timeinfo.tm_mon = msg->month() - 1;
timeinfo.tm_mday = msg->day();
timeinfo.tm_hour = msg->hour();
timeinfo.tm_min = msg->min();
timeinfo.tm_sec = msg->sec();
std::time_t utc_tt = timegm(&timeinfo);
gpsLoc.setUnixTimestampMillis(utc_tt * 1e+03 + msg->nano() * 1e-06);
float f[] = { msg->vel_n() * 1e-03f, msg->vel_e() * 1e-03f, msg->vel_d() * 1e-03f };
gpsLoc.setVNED(f);
gpsLoc.setVerticalAccuracy(msg->v_acc() * 1e-03);
gpsLoc.setSpeedAccuracy(msg->s_acc() * 1e-03);
gpsLoc.setBearingAccuracyDeg(msg->head_acc() * 1e-05);
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::parse_gps_ephemeris(ubx_t::rxm_sfrbx_t *msg) {
// GPS subframes are packed into 10x 4 bytes, each containing 3 actual bytes
// We will first need to separate the data from the padding and parity
auto body = *msg->body();
assert(body.size() == 10);
std::string subframe_data;
subframe_data.reserve(30);
for (uint32_t word : body) {
word = word >> 6; // TODO: Verify parity
subframe_data.push_back(word >> 16);
subframe_data.push_back(word >> 8);
subframe_data.push_back(word >> 0);
}
// Collect subframes in map and parse when we have all the parts
{
kaitai::kstream stream(subframe_data);
gps_t subframe(&stream);
int subframe_id = subframe.how()->subframe_id();
if (subframe_id > 3 || subframe_id < 1) {
// dont parse almanac subframes
return kj::Array<capnp::word>();
}
gps_subframes[msg->sv_id()][subframe_id] = subframe_data;
}
// publish if subframes 1-3 have been collected
if (gps_subframes[msg->sv_id()].size() == 3) {
MessageBuilder msg_builder;
auto eph = msg_builder.initEvent().initUbloxGnss().initEphemeris();
eph.setSvId(msg->sv_id());
int iode_s2 = 0;
int iode_s3 = 0;
int iodc_lsb = 0;
int week;
// Subframe 1
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][1]);
gps_t subframe(&stream);
gps_t::subframe_1_t* subframe_1 = static_cast<gps_t::subframe_1_t*>(subframe.body());
// Each message is incremented to be greater or equal than week 1877 (2015-12-27).
// To skip this use the current_time argument
week = subframe_1->week_no();
week += 1024;
if (week < 1877) {
week += 1024;
}
//eph.setGpsWeek(subframe_1->week_no());
eph.setTgd(subframe_1->t_gd() * pow(2, -31));
eph.setToc(subframe_1->t_oc() * pow(2, 4));
eph.setAf2(subframe_1->af_2() * pow(2, -55));
eph.setAf1(subframe_1->af_1() * pow(2, -43));
eph.setAf0(subframe_1->af_0() * pow(2, -31));
eph.setSvHealth(subframe_1->sv_health());
eph.setTowCount(subframe.how()->tow_count());
iodc_lsb = subframe_1->iodc_lsb();
}
// Subframe 2
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][2]);
gps_t subframe(&stream);
gps_t::subframe_2_t* subframe_2 = static_cast<gps_t::subframe_2_t*>(subframe.body());
// GPS week refers to current week, the ephemeris can be valid for the next
// if toe equals 0, this can be verified by the TOW count if it is within the
// last 2 hours of the week (gps ephemeris valid for 4hours)
if (subframe_2->t_oe() == 0 and subframe.how()->tow_count()*6 >= (SECS_IN_WEEK - 2*SECS_IN_HR)){
week += 1;
}
eph.setCrs(subframe_2->c_rs() * pow(2, -5));
eph.setDeltaN(subframe_2->delta_n() * pow(2, -43) * gpsPi);
eph.setM0(subframe_2->m_0() * pow(2, -31) * gpsPi);
eph.setCuc(subframe_2->c_uc() * pow(2, -29));
eph.setEcc(subframe_2->e() * pow(2, -33));
eph.setCus(subframe_2->c_us() * pow(2, -29));
eph.setA(pow(subframe_2->sqrt_a() * pow(2, -19), 2.0));
eph.setToe(subframe_2->t_oe() * pow(2, 4));
iode_s2 = subframe_2->iode();
}
// Subframe 3
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][3]);
gps_t subframe(&stream);
gps_t::subframe_3_t* subframe_3 = static_cast<gps_t::subframe_3_t*>(subframe.body());
eph.setCic(subframe_3->c_ic() * pow(2, -29));
eph.setOmega0(subframe_3->omega_0() * pow(2, -31) * gpsPi);
eph.setCis(subframe_3->c_is() * pow(2, -29));
eph.setI0(subframe_3->i_0() * pow(2, -31) * gpsPi);
eph.setCrc(subframe_3->c_rc() * pow(2, -5));
eph.setOmega(subframe_3->omega() * pow(2, -31) * gpsPi);
eph.setOmegaDot(subframe_3->omega_dot() * pow(2, -43) * gpsPi);
eph.setIode(subframe_3->iode());
eph.setIDot(subframe_3->idot() * pow(2, -43) * gpsPi);
iode_s3 = subframe_3->iode();
}
eph.setToeWeek(week);
eph.setTocWeek(week);
gps_subframes[msg->sv_id()].clear();
if (iodc_lsb != iode_s2 || iodc_lsb != iode_s3) {
// data set cutover, reject ephemeris
return kj::Array<capnp::word>();
}
return capnp::messageToFlatArray(msg_builder);
}
return kj::Array<capnp::word>();
}
kj::Array<capnp::word> UbloxMsgParser::parse_glonass_ephemeris(ubx_t::rxm_sfrbx_t *msg) {
// This parser assumes that no 2 satellites of the same frequency
// can be in view at the same time
auto body = *msg->body();
assert(body.size() == 4);
{
std::string string_data;
string_data.reserve(16);
for (uint32_t word : body) {
for (int i = 3; i >= 0; i--)
string_data.push_back(word >> 8*i);
}
kaitai::kstream stream(string_data);
glonass_t gl_string(&stream);
int string_number = gl_string.string_number();
if (string_number < 1 || string_number > 5 || gl_string.idle_chip()) {
// dont parse non immediate data, idle_chip == 0
return kj::Array<capnp::word>();
}
// Check if new string either has same superframe_id or log transmission times make sense
bool superframe_unknown = false;
bool needs_clear = false;
for (int i = 1; i <= 5; i++) {
if (glonass_strings[msg->freq_id()].find(i) == glonass_strings[msg->freq_id()].end())
continue;
if (glonass_string_superframes[msg->freq_id()][i] == 0 || gl_string.superframe_number() == 0) {
superframe_unknown = true;
} else if (glonass_string_superframes[msg->freq_id()][i] != gl_string.superframe_number()) {
needs_clear = true;
}
// Check if string times add up to being from the same frame
// If superframe is known this is redundant
// Strings are sent 2s apart and frames are 30s apart
if (superframe_unknown &&
std::abs((glonass_string_times[msg->freq_id()][i] - 2.0 * i) - (last_log_time - 2.0 * string_number)) > 10)
needs_clear = true;
}
if (needs_clear) {
glonass_strings[msg->freq_id()].clear();
glonass_string_superframes[msg->freq_id()].clear();
glonass_string_times[msg->freq_id()].clear();
}
glonass_strings[msg->freq_id()][string_number] = string_data;
glonass_string_superframes[msg->freq_id()][string_number] = gl_string.superframe_number();
glonass_string_times[msg->freq_id()][string_number] = last_log_time;
}
if (msg->sv_id() == 255) {
// data can be decoded before identifying the SV number, in this case 255
// is returned, which means "unknown" (ublox p32)
return kj::Array<capnp::word>();
}
// publish if strings 1-5 have been collected
if (glonass_strings[msg->freq_id()].size() != 5) {
return kj::Array<capnp::word>();
}
MessageBuilder msg_builder;
auto eph = msg_builder.initEvent().initUbloxGnss().initGlonassEphemeris();
eph.setSvId(msg->sv_id());
eph.setFreqNum(msg->freq_id() - 7);
uint16_t current_day = 0;
uint16_t tk = 0;
// string number 1
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][1]);
glonass_t gl_stream(&stream);
glonass_t::string_1_t* data = static_cast<glonass_t::string_1_t*>(gl_stream.data());
eph.setP1(data->p1());
tk = data->t_k();
eph.setTkDEPRECATED(tk);
eph.setXVel(data->x_vel() * pow(2, -20));
eph.setXAccel(data->x_accel() * pow(2, -30));
eph.setX(data->x() * pow(2, -11));
}
// string number 2
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][2]);
glonass_t gl_stream(&stream);
glonass_t::string_2_t* data = static_cast<glonass_t::string_2_t*>(gl_stream.data());
eph.setSvHealth(data->b_n()>>2); // MSB indicates health
eph.setP2(data->p2());
eph.setTb(data->t_b());
eph.setYVel(data->y_vel() * pow(2, -20));
eph.setYAccel(data->y_accel() * pow(2, -30));
eph.setY(data->y() * pow(2, -11));
}
// string number 3
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][3]);
glonass_t gl_stream(&stream);
glonass_t::string_3_t* data = static_cast<glonass_t::string_3_t*>(gl_stream.data());
eph.setP3(data->p3());
eph.setGammaN(data->gamma_n() * pow(2, -40));
eph.setSvHealth(eph.getSvHealth() | data->l_n());
eph.setZVel(data->z_vel() * pow(2, -20));
eph.setZAccel(data->z_accel() * pow(2, -30));
eph.setZ(data->z() * pow(2, -11));
}
// string number 4
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][4]);
glonass_t gl_stream(&stream);
glonass_t::string_4_t* data = static_cast<glonass_t::string_4_t*>(gl_stream.data());
current_day = data->n_t();
eph.setNt(current_day);
eph.setTauN(data->tau_n() * pow(2, -30));
eph.setDeltaTauN(data->delta_tau_n() * pow(2, -30));
eph.setAge(data->e_n());
eph.setP4(data->p4());
eph.setSvURA(glonass_URA_lookup.at(data->f_t()));
if (msg->sv_id() != data->n()) {
LOGE("SV_ID != SLOT_NUMBER: %d %" PRIu64, msg->sv_id(), data->n());
}
eph.setSvType(data->m());
}
// string number 5
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][5]);
glonass_t gl_stream(&stream);
glonass_t::string_5_t* data = static_cast<glonass_t::string_5_t*>(gl_stream.data());
// string5 parsing is only needed to get the year, this can be removed and
// the year can be fetched later in laika (note rollovers and leap year)
eph.setN4(data->n_4());
int tk_seconds = SECS_IN_HR * ((tk>>7) & 0x1F) + SECS_IN_MIN * ((tk>>1) & 0x3F) + (tk & 0x1) * 30;
eph.setTkSeconds(tk_seconds);
}
glonass_strings[msg->freq_id()].clear();
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_rxm_sfrbx(ubx_t::rxm_sfrbx_t *msg) {
switch (msg->gnss_id()) {
case ubx_t::gnss_type_t::GNSS_TYPE_GPS:
return parse_gps_ephemeris(msg);
case ubx_t::gnss_type_t::GNSS_TYPE_GLONASS:
return parse_glonass_ephemeris(msg);
default:
return kj::Array<capnp::word>();
}
}
kj::Array<capnp::word> UbloxMsgParser::gen_rxm_rawx(ubx_t::rxm_rawx_t *msg) {
MessageBuilder msg_builder;
auto mr = msg_builder.initEvent().initUbloxGnss().initMeasurementReport();
mr.setRcvTow(msg->rcv_tow());
mr.setGpsWeek(msg->week());
mr.setLeapSeconds(msg->leap_s());
mr.setGpsWeek(msg->week());
auto mb = mr.initMeasurements(msg->num_meas());
auto measurements = *msg->meas();
for(int8_t i = 0; i < msg->num_meas(); i++) {
mb[i].setSvId(measurements[i]->sv_id());
mb[i].setPseudorange(measurements[i]->pr_mes());
mb[i].setCarrierCycles(measurements[i]->cp_mes());
mb[i].setDoppler(measurements[i]->do_mes());
mb[i].setGnssId(measurements[i]->gnss_id());
mb[i].setGlonassFrequencyIndex(measurements[i]->freq_id());
mb[i].setLocktime(measurements[i]->lock_time());
mb[i].setCno(measurements[i]->cno());
mb[i].setPseudorangeStdev(0.01 * (pow(2, (measurements[i]->pr_stdev() & 15)))); // weird scaling, might be wrong
mb[i].setCarrierPhaseStdev(0.004 * (measurements[i]->cp_stdev() & 15));
mb[i].setDopplerStdev(0.002 * (pow(2, (measurements[i]->do_stdev() & 15)))); // weird scaling, might be wrong
auto ts = mb[i].initTrackingStatus();
auto trk_stat = measurements[i]->trk_stat();
ts.setPseudorangeValid(bit_to_bool(trk_stat, 0));
ts.setCarrierPhaseValid(bit_to_bool(trk_stat, 1));
ts.setHalfCycleValid(bit_to_bool(trk_stat, 2));
ts.setHalfCycleSubtracted(bit_to_bool(trk_stat, 3));
}
mr.setNumMeas(msg->num_meas());
auto rs = mr.initReceiverStatus();
rs.setLeapSecValid(bit_to_bool(msg->rec_stat(), 0));
rs.setClkReset(bit_to_bool(msg->rec_stat(), 2));
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_nav_sat(ubx_t::nav_sat_t *msg) {
MessageBuilder msg_builder;
auto sr = msg_builder.initEvent().initUbloxGnss().initSatReport();
sr.setITow(msg->itow());
auto svs = sr.initSvs(msg->num_svs());
auto svs_data = *msg->svs();
for(int8_t i = 0; i < msg->num_svs(); i++) {
svs[i].setSvId(svs_data[i]->sv_id());
svs[i].setGnssId(svs_data[i]->gnss_id());
svs[i].setFlagsBitfield(svs_data[i]->flags());
}
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw(ubx_t::mon_hw_t *msg) {
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus();
hwStatus.setNoisePerMS(msg->noise_per_ms());
hwStatus.setFlags(msg->flags());
hwStatus.setAgcCnt(msg->agc_cnt());
hwStatus.setAStatus((cereal::UbloxGnss::HwStatus::AntennaSupervisorState) msg->a_status());
hwStatus.setAPower((cereal::UbloxGnss::HwStatus::AntennaPowerStatus) msg->a_power());
hwStatus.setJamInd(msg->jam_ind());
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw2(ubx_t::mon_hw2_t *msg) {
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus2();
hwStatus.setOfsI(msg->ofs_i());
hwStatus.setMagI(msg->mag_i());
hwStatus.setOfsQ(msg->ofs_q());
hwStatus.setMagQ(msg->mag_q());
switch (msg->cfg_source()) {
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_ROM:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::ROM);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_OTP:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::OTP);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_CONFIG_PINS:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::CONFIGPINS);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_FLASH:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::FLASH);
break;
default:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::UNDEFINED);
break;
}
hwStatus.setLowLevCfg(msg->low_lev_cfg());
hwStatus.setPostStatus(msg->post_status());
return capnp::messageToFlatArray(msg_builder);
}