openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

374 lines
14 KiB

#!/usr/bin/env python3
import os
import numpy as np
import capnp
from collections import deque
from functools import partial
import cereal.messaging as messaging
from cereal import car, log
from cereal.services import SERVICE_LIST
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose, fft_next_good_size, parabolic_peak_interp
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 25.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MAX_YAW_RATE_SANITY_CHECK = 1.0
MIN_NCC = 0.95
MAX_LAG = 1.0
MAX_LAG_STD = 0.1
MAX_LAT_ACCEL = 2.0
MAX_LAT_ACCEL_DIFF = 0.6
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
def __init__(self, num_points: int):
self.times = deque[float]([0.0] * num_points, maxlen=num_points)
self.okay = deque[bool]([False] * num_points, maxlen=num_points)
self.desired = deque[float]([0.0] * num_points, maxlen=num_points)
self.actual = deque[float]([0.0] * num_points, maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t: float, desired: float, actual: float, okay: bool):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = valid_blocks % num_blocks
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value: float):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + value) / (self.idx + 1)
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self) -> tuple[float, float, float, float]:
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
valid_and_current_idx = valid_block_idx + ([self.block_idx] if self.idx > 0 else [])
if len(valid_block_idx) > 0:
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item())
valid_std = float(np.std(self.values[valid_block_idx], axis=0).item())
else:
valid_mean, valid_std = float('nan'), float('nan')
if len(valid_and_current_idx) > 0:
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item())
current_std = float(np.std(self.values[valid_and_current_idx], axis=0).item())
else:
current_mean, current_std = float('nan'), float('nan')
return valid_mean, valid_std, current_mean, current_std
class LateralLagEstimator:
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
def __init__(self, CP: car.CarParams, dt: float,
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE,
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC,
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC,
max_lat_accel: float = MAX_LAT_ACCEL, max_lat_accel_diff: float = MAX_LAT_ACCEL_DIFF):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.max_lat_accel = max_lat_accel
self.max_lat_accel_diff = max_lat_accel_diff
self.t = 0.0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
self.desired_curvature = 0.0
self.v_ego = 0.0
self.yaw_rate = 0.0
self.yaw_rate_std = 0.0
self.pose_valid = False
self.last_lat_inactive_t = 0.0
self.last_steering_pressed_t = 0.0
self.last_steering_saturated_t = 0.0
self.last_pose_invalid_t = 0.0
self.last_estimate_t = 0.0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag: float, valid_blocks: int):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
valid_mean_lag, valid_std, current_mean_lag, current_std = self.block_avg.get()
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag) and not np.isnan(valid_std):
if valid_std > MAX_LAG_STD:
liveDelay.status = log.LiveDelayData.Status.invalid
else:
liveDelay.status = log.LiveDelayData.Status.estimated
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
if liveDelay.status == log.LiveDelayData.Status.estimated:
liveDelay.lateralDelay = valid_mean_lag
else:
liveDelay.lateralDelay = self.initial_lag
if not np.isnan(current_mean_lag) and not np.isnan(current_std):
liveDelay.lateralDelayEstimate = current_mean_lag
liveDelay.lateralDelayEstimateStd = current_std
else:
liveDelay.lateralDelayEstimate = self.initial_lag
liveDelay.lateralDelayEstimateStd = 0.0
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.yaw
self.yaw_rate_std = calibrated_pose.angular_velocity.yaw_std
self.pose_valid = msg.angularVelocityDevice.valid and msg.posenetOK and msg.inputsOK
self.t = t
def points_enough(self):
return self.points.num_points >= int(self.okay_window_sec / self.dt)
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
sensors_valid = self.pose_valid and np.abs(self.yaw_rate) < MAX_YAW_RATE_SANITY_CHECK and self.yaw_rate_std < MAX_YAW_RATE_SANITY_CHECK
la_valid = np.abs(la_actual_pose) <= self.max_lat_accel and np.abs(la_desired - la_actual_pose) <= self.max_lat_accel_diff
calib_valid = self.calibrator.calib_valid
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
if not sensors_valid or not la_valid:
self.last_pose_invalid_t = self.t
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated, !sensors/la_valid
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t, self.last_pose_invalid_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and \
fast and turning and has_recovered and calib_valid and sensors_valid and la_valid
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
if not self.points_enough():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
is_valid = self.points_valid()
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:]))
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG)
if corr < self.min_ncc or not is_valid:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]:
assert len(expected_sig) == len(actual_sig)
max_lag_samples = int(max_lag / dt)
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples)
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size)
# only consider lags from 0 to max_lag
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr
def retrieve_initial_lag(params_reader: Params, CP: car.CarParams):
last_lag_data = params_reader.get("LiveDelay")
last_carparams_data = params_reader.get("CarParamsPrevRoute")
if last_lag_data is not None:
try:
with log.Event.from_bytes(last_lag_data) as last_lag_msg, car.CarParams.from_bytes(last_carparams_data) as last_CP:
ld = last_lag_msg.liveDelay
if last_CP.carFingerprint != CP.carFingerprint:
raise Exception("Car model mismatch")
lag, valid_blocks, status = ld.lateralDelayEstimate, ld.validBlocks, ld.status
assert valid_blocks <= BLOCK_NUM, "Invalid number of valid blocks"
assert status != log.LiveDelayData.Status.invalid, "Lag estimate is invalid"
return lag, valid_blocks
except Exception as e:
cloudlog.error(f"Failed to retrieve initial lag: {e}")
return None
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
pm = messaging.PubMaster(['liveDelay'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState', 'controlsState', 'carControl'], poll='livePose')
params_reader = Params()
CP = messaging.log_from_bytes(params_reader.get("CarParams", block=True), car.CarParams)
lag_learner = LateralLagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
if (initial_lag_params := retrieve_initial_lag(params_reader, CP)) is not None:
lag, valid_blocks = initial_lag_params
lag_learner.reset(lag, valid_blocks)
while True:
sm.update()
if sm.all_checks():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
lag_learner.handle_log(t, which, sm[which])
lag_learner.update_points()
# 4Hz driven by livePose
if sm.frame % 5 == 0:
lag_learner.update_estimate()
lag_msg = lag_learner.get_msg(sm.all_checks(), DEBUG)
lag_msg_dat = lag_msg.to_bytes()
pm.send('liveDelay', lag_msg_dat)
if sm.frame % 1200 == 0: # cache every 60 seconds
params_reader.put_nonblocking("LiveDelay", lag_msg_dat)