You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
11 KiB
239 lines
11 KiB
1 month ago
|
import os
|
||
|
from extra.export_model import compile_net, jit_model, dtype_to_js_type
|
||
|
from extra.f16_decompress import u32_to_f16
|
||
|
from examples.stable_diffusion import StableDiffusion
|
||
|
from tinygrad.nn.state import get_state_dict, safe_save, safe_load_metadata, torch_load, load_state_dict
|
||
|
from tinygrad.tensor import Tensor
|
||
|
from tinygrad import Device, dtypes
|
||
|
from tinygrad.helpers import fetch
|
||
|
from typing import NamedTuple, Any, List
|
||
|
import requests
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
|
||
|
def convert_f32_to_f16(input_file, output_file):
|
||
|
with open(input_file, 'rb') as f:
|
||
|
metadata_length_bytes = f.read(8)
|
||
|
metadata_length = int.from_bytes(metadata_length_bytes, byteorder='little', signed=False)
|
||
|
metadata_json_bytes = f.read(metadata_length)
|
||
|
float32_values = np.fromfile(f, dtype=np.float32)
|
||
|
|
||
|
first_text_model_offset = 3772703308
|
||
|
num_elements = int((first_text_model_offset)/4)
|
||
|
front_float16_values = float32_values[:num_elements].astype(np.float16)
|
||
|
rest_float32_values = float32_values[num_elements:]
|
||
|
|
||
|
with open(output_file, 'wb') as f:
|
||
|
f.write(metadata_length_bytes)
|
||
|
f.write(metadata_json_bytes)
|
||
|
front_float16_values.tofile(f)
|
||
|
rest_float32_values.tofile(f)
|
||
|
|
||
|
def split_safetensor(fn):
|
||
|
_, data_start, metadata = safe_load_metadata(fn)
|
||
|
text_model_offset = 3772703308
|
||
|
chunk_size = 536870912
|
||
|
|
||
|
for k in metadata:
|
||
|
# safetensor is in fp16, except for text moel
|
||
|
if (metadata[k]["data_offsets"][0] < text_model_offset):
|
||
|
metadata[k]["data_offsets"][0] = int(metadata[k]["data_offsets"][0]/2)
|
||
|
metadata[k]["data_offsets"][1] = int(metadata[k]["data_offsets"][1]/2)
|
||
|
|
||
|
last_offset = 0
|
||
|
part_end_offsets = []
|
||
|
|
||
|
for k in metadata:
|
||
|
offset = metadata[k]['data_offsets'][0]
|
||
|
|
||
|
if offset == text_model_offset:
|
||
|
break
|
||
|
|
||
|
part_offset = offset - last_offset
|
||
|
|
||
|
if (part_offset >= chunk_size):
|
||
|
part_end_offsets.append(data_start+offset)
|
||
|
last_offset = offset
|
||
|
|
||
|
text_model_start = int(text_model_offset/2)
|
||
|
net_bytes = bytes(open(fn, 'rb').read())
|
||
|
part_end_offsets.append(text_model_start+data_start)
|
||
|
cur_pos = 0
|
||
|
|
||
|
for i, end_pos in enumerate(part_end_offsets):
|
||
|
with open(os.path.join(os.path.dirname(__file__), f'./net_part{i}.safetensors'), "wb+") as f:
|
||
|
f.write(net_bytes[cur_pos:end_pos])
|
||
|
cur_pos = end_pos
|
||
|
|
||
|
with open(os.path.join(os.path.dirname(__file__), f'./net_textmodel.safetensors'), "wb+") as f:
|
||
|
f.write(net_bytes[text_model_start+data_start:])
|
||
|
|
||
|
return part_end_offsets
|
||
|
|
||
|
def fetch_dep(file, url):
|
||
|
with open(file, "w", encoding="utf-8") as f:
|
||
|
f.write(requests.get(url).text.replace("https://huggingface.co/wpmed/tinygrad-sd-f16/raw/main/bpe_simple_vocab_16e6.mjs", "./bpe_simple_vocab_16e6.mjs"))
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
fetch_dep(os.path.join(os.path.dirname(__file__), "clip_tokenizer.js"), "https://huggingface.co/wpmed/tinygrad-sd-f16/raw/main/clip_tokenizer.js")
|
||
|
fetch_dep(os.path.join(os.path.dirname(__file__), "bpe_simple_vocab_16e6.mjs"), "https://huggingface.co/wpmed/tinygrad-sd-f16/raw/main/bpe_simple_vocab_16e6.mjs")
|
||
|
parser = argparse.ArgumentParser(description='Run Stable Diffusion', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
parser.add_argument('--remoteweights', action='store_true', help="Use safetensors from Huggingface, or from local")
|
||
|
args = parser.parse_args()
|
||
|
Device.DEFAULT = "WEBGPU"
|
||
|
|
||
|
Tensor.no_grad = True
|
||
|
model = StableDiffusion()
|
||
|
|
||
|
# load in weights
|
||
|
load_state_dict(model, torch_load(fetch('https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt', 'sd-v1-4.ckpt'))['state_dict'], strict=False)
|
||
|
|
||
|
class Step(NamedTuple):
|
||
|
name: str = ""
|
||
|
input: List[Tensor] = []
|
||
|
forward: Any = None
|
||
|
|
||
|
sub_steps = [
|
||
|
Step(name = "textModel", input = [Tensor.randn(1, 77)], forward = model.cond_stage_model.transformer.text_model),
|
||
|
Step(name = "diffusor", input = [Tensor.randn(1, 77, 768), Tensor.randn(1, 77, 768), Tensor.randn(1,4,64,64), Tensor.rand(1), Tensor.randn(1), Tensor.randn(1), Tensor.randn(1)], forward = model),
|
||
|
Step(name = "decoder", input = [Tensor.randn(1,4,64,64)], forward = model.decode),
|
||
|
Step(name = "f16tof32", input = [Tensor.randn(2097120, dtype=dtypes.uint32)], forward = u32_to_f16)
|
||
|
]
|
||
|
|
||
|
prg = ""
|
||
|
|
||
|
def fixup_code(code, key):
|
||
|
code = code.replace(key, 'main')\
|
||
|
.replace("var<uniform> INFINITY : f32;\n", "fn inf(a: f32) -> f32 { return a/0.0; }\n")\
|
||
|
.replace("@group(0) @binding(0)", "")\
|
||
|
.replace("INFINITY", "inf(1.0)")
|
||
|
|
||
|
for i in range(1,9): code = code.replace(f"binding({i})", f"binding({i-1})")
|
||
|
return code
|
||
|
|
||
|
def compile_step(model, step: Step):
|
||
|
run, special_names = jit_model(step, *step.input)
|
||
|
functions, statements, bufs, _ = compile_net(run, special_names)
|
||
|
state = get_state_dict(model)
|
||
|
weights = {id(x.lazydata.base.realized): name for name, x in state.items()}
|
||
|
kernel_code = '\n\n'.join([f"const {key} = `{fixup_code(code, key)}`;" for key, code in functions.items()])
|
||
|
kernel_names = ', '.join([name for (name, _, _, _) in statements])
|
||
|
input_names = [name for _,name in special_names.items() if "input" in name]
|
||
|
output_names = [name for _,name in special_names.items() if "output" in name]
|
||
|
input_buf_types = [dtype_to_js_type(bufs[inp_name][1]) for inp_name in input_names]
|
||
|
output_buf_types = [dtype_to_js_type(bufs[out_name][1]) for out_name in output_names]
|
||
|
kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, piplines[{i}], [{', '.join(args)}], {global_size});" for i, (_name, args, global_size, _local_size) in enumerate(statements) ])
|
||
|
exported_bufs = '\n '.join([f"const {name} = " + (f"createEmptyBuf(device, {size});" if _key not in weights else f"createWeightBuf(device, {size}, getTensorBuffer(safetensor, metadata['{weights[_key]}'], '{weights[_key]}'))") + ";" for name,(size,dtype,_key) in bufs.items()])
|
||
|
gpu_write_bufs = '\n '.join([f"const gpuWriteBuffer{i} = device.createBuffer({{size:input{i}.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }});" for i,(_,value) in enumerate(special_names.items()) if "output" not in value])
|
||
|
input_writer = '\n '.join([f"await gpuWriteBuffer{i}.mapAsync(GPUMapMode.WRITE);\n new {input_buf_types[i]}(gpuWriteBuffer{i}.getMappedRange()).set(" + f'data{i});' + f"\n gpuWriteBuffer{i}.unmap();\ncommandEncoder.copyBufferToBuffer(gpuWriteBuffer{i}, 0, input{i}, 0, gpuWriteBuffer{i}.size);" for i,_ in enumerate(input_names)])
|
||
|
return f"""\n var {step.name} = function() {{
|
||
|
|
||
|
{kernel_code}
|
||
|
|
||
|
return {{
|
||
|
"setup": async (device, safetensor) => {{
|
||
|
const metadata = safetensor ? getTensorMetadata(safetensor[0]) : null;
|
||
|
|
||
|
{exported_bufs}
|
||
|
|
||
|
{gpu_write_bufs}
|
||
|
const gpuReadBuffer = device.createBuffer({{ size: output0.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }});
|
||
|
|
||
|
const kernels = [{kernel_names}];
|
||
|
const piplines = await Promise.all(kernels.map(name => device.createComputePipelineAsync({{layout: "auto", compute: {{ module: device.createShaderModule({{ code: name }}), entryPoint: "main" }}}})));
|
||
|
|
||
|
return async ({",".join([f'data{i}' for i,(k,v) in enumerate(special_names.items()) if v != "output0"])}) => {{
|
||
|
const commandEncoder = device.createCommandEncoder();
|
||
|
|
||
|
{input_writer}
|
||
|
|
||
|
{kernel_calls}
|
||
|
commandEncoder.copyBufferToBuffer(output0, 0, gpuReadBuffer, 0, output0.size);
|
||
|
const gpuCommands = commandEncoder.finish();
|
||
|
device.queue.submit([gpuCommands]);
|
||
|
|
||
|
await gpuReadBuffer.mapAsync(GPUMapMode.READ);
|
||
|
const resultBuffer = new {output_buf_types[0]}(gpuReadBuffer.size/{bufs[output_names[0]][1].itemsize});
|
||
|
resultBuffer.set(new {output_buf_types[0]}(gpuReadBuffer.getMappedRange()));
|
||
|
gpuReadBuffer.unmap();
|
||
|
return resultBuffer;
|
||
|
}}
|
||
|
}}
|
||
|
}}
|
||
|
}}
|
||
|
"""
|
||
|
|
||
|
for step in sub_steps:
|
||
|
print(f'Executing step={step.name}')
|
||
|
prg += compile_step(model, step)
|
||
|
|
||
|
if step.name == "diffusor":
|
||
|
if args.remoteweights:
|
||
|
base_url = "https://huggingface.co/wpmed/stable-diffusion-f16-new/resolve/main"
|
||
|
else:
|
||
|
state = get_state_dict(model)
|
||
|
safe_save(state, os.path.join(os.path.dirname(__file__), "net.safetensors"))
|
||
|
convert_f32_to_f16(os.path.join(os.path.dirname(__file__), "./net.safetensors"), os.path.join(os.path.dirname(__file__), "./net_conv.safetensors"))
|
||
|
split_safetensor(os.path.join(os.path.dirname(__file__), "./net_conv.safetensors"))
|
||
|
os.remove(os.path.join(os.path.dirname(__file__), "net.safetensors"))
|
||
|
os.remove(os.path.join(os.path.dirname(__file__), "net_conv.safetensors"))
|
||
|
base_url = "."
|
||
|
|
||
|
prekernel = f"""
|
||
|
window.MODEL_BASE_URL= "{base_url}";
|
||
|
const getTensorMetadata = (safetensorBuffer) => {{
|
||
|
const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true));
|
||
|
const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength)));
|
||
|
return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {{...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}}]));
|
||
|
}};
|
||
|
|
||
|
const getTensorBuffer = (safetensorParts, tensorMetadata, key) => {{
|
||
|
let selectedPart = 0;
|
||
|
let counter = 0;
|
||
|
let partStartOffsets = [1131408336, 2227518416, 3308987856, 4265298864];
|
||
|
let correctedOffsets = tensorMetadata.data_offsets;
|
||
|
let prev_offset = 0;
|
||
|
|
||
|
for (let start of partStartOffsets) {{
|
||
|
prev_offset = (counter == 0) ? 0 : partStartOffsets[counter-1];
|
||
|
|
||
|
if (tensorMetadata.data_offsets[0] < start) {{
|
||
|
selectedPart = counter;
|
||
|
correctedOffsets = [correctedOffsets[0]-prev_offset, correctedOffsets[1]-prev_offset];
|
||
|
break;
|
||
|
}}
|
||
|
|
||
|
counter++;
|
||
|
}}
|
||
|
|
||
|
return safetensorParts[selectedPart].subarray(...correctedOffsets);
|
||
|
}}
|
||
|
|
||
|
const getWeight = (safetensors, key) => {{
|
||
|
let uint8Data = getTensorBuffer(safetensors, getTensorMetadata(safetensors[0])[key], key);
|
||
|
return new Float32Array(uint8Data.buffer, uint8Data.byteOffset, uint8Data.byteLength / Float32Array.BYTES_PER_ELEMENT);
|
||
|
}}
|
||
|
|
||
|
const createEmptyBuf = (device, size) => {{
|
||
|
return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }});
|
||
|
}};
|
||
|
|
||
|
const createWeightBuf = (device, size, data) => {{
|
||
|
const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.STORAGE }});
|
||
|
new Uint8Array(buf.getMappedRange()).set(data);
|
||
|
buf.unmap();
|
||
|
return buf;
|
||
|
}};
|
||
|
|
||
|
const addComputePass = (device, commandEncoder, pipeline, bufs, workgroup) => {{
|
||
|
const bindGroup = device.createBindGroup({{layout: pipeline.getBindGroupLayout(0), entries: bufs.map((buffer, index) => ({{ binding: index, resource: {{ buffer }} }}))}});
|
||
|
const passEncoder = commandEncoder.beginComputePass();
|
||
|
passEncoder.setPipeline(pipeline);
|
||
|
passEncoder.setBindGroup(0, bindGroup);
|
||
|
passEncoder.dispatchWorkgroups(...workgroup);
|
||
|
passEncoder.end();
|
||
|
}};"""
|
||
|
|
||
|
with open(os.path.join(os.path.dirname(__file__), "net.js"), "w") as text_file:
|
||
|
text_file.write(prekernel + prg)
|