openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

66 lines
3.1 KiB

import time, struct
from typing import Any, Callable, Optional
import numpy as np
from tinygrad import Tensor, dtypes
from tinygrad.ops import UOp, Ops, sint
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.tensor import _to_np_dtype
from tinygrad.engine.realize import Runner
from tinygrad.dtype import ConstType, DType
from tinygrad.nn.state import get_parameters
from tinygrad.helpers import T, unwrap
from tinygrad.codegen.linearize import linearize_uop
from tinygrad.codegen.devectorizer import full_graph_rewrite
from tinygrad.runtime.ops_python import PythonProgram, PythonRenderer, PythonCompiler, PythonAllocator
def derandomize_model(model):
for p in get_parameters(model):
p.replace(Tensor.empty(p.shape, device=p.device, dtype=p.dtype))
p.realize()
def assert_jit_cache_len(fxn, expected_len):
if not fxn.jit_cache:
assert expected_len == 0, expected_len
return
# until we have a better way of typing the prg in ExecItem
if issubclass(type(fxn.jit_cache[0].prg), Runner) and not type(fxn.jit_cache[0].prg).__name__.endswith('Graph'):
assert len(fxn.jit_cache) == expected_len, f"expected {expected_len}, got {len(fxn.jit_cache)}"
else:
assert len(fxn.jit_cache) == 1, len(fxn.jit_cache)
# until we have a better way of typing the prg in ExecItem
assert type(fxn.jit_cache[0].prg).__name__.endswith('Graph')
assert len(fxn.jit_cache[0].prg.jit_cache) == expected_len
def rand_for_dtype(dt:DType, size:int):
if dtypes.is_unsigned(dt):
return np.random.randint(0, 100, size=size, dtype=_to_np_dtype(dt))
elif dtypes.is_int(dt):
return np.random.randint(-100, 100, size=size, dtype=_to_np_dtype(dt))
elif dt == dtypes.bool:
return np.random.choice([True, False], size=size)
return np.random.uniform(-10, 10, size=size).astype(_to_np_dtype(dt))
def ast_const(dtype:DType, val:ConstType, shape:tuple[sint, ...]=(), st:Optional[ShapeTracker]=None, st_src:Optional[tuple[UOp]]=None) -> UOp:
if st_src is None:
st_src = (st.to_uop() if st is not None else ShapeTracker.from_shape(()).reshape((1,)*len(shape)).expand(shape).to_uop(),)
st = unwrap(st_src[0].st)
if all(v.mask is None for v in st.views): return UOp.const(dtype, val).replace(src=(st.to_uop(),))
return UOp.const(dtype, val).valid(st)
def timeit(fxn:Callable[..., T], *args, **kwargs) -> tuple[T, float]:
st = time.perf_counter_ns()
ret = fxn(*args, **kwargs)
return ret, (time.perf_counter_ns()-st)*1e-6
def eval_uop(uop:UOp, inputs:list[tuple[DType, list[Any]]]|None=None):
allocator = PythonAllocator()
bufs = []
for buf_dt, data in inputs or []:
bufs.append(buf:=allocator.alloc(len(data) * buf_dt.itemsize))
allocator._copyin(buf, memoryview(struct.pack(str(len(data)) + buf_dt.fmt, *data)))
g = UOp(Ops.DEFINE_GLOBAL, uop.dtype.ptr(), arg=0, src=())
rw = full_graph_rewrite(UOp.store(g.index(UOp.const(dtypes.int, 0)), uop).sink(), PythonRenderer)
prog = PythonProgram("run", PythonCompiler().compile(PythonRenderer().render(linearize_uop(rw))))
prog(out_buf:=allocator.alloc(uop.dtype.itemsize), *bufs)
return out_buf.cast(uop.dtype.fmt).tolist()[0]