openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

88 lines
2.5 KiB

#!/usr/bin/env python
import time
import unittest
import torch
from tinygrad import Tensor, Device
from tinygrad.helpers import Profiling, CI
@unittest.skipIf(CI and Device.DEFAULT in {"CUDA", "NV"}, "slow")
class TestConvSpeed(unittest.TestCase):
def test_mnist(self):
# https://keras.io/examples/vision/mnist_convnet/
conv = 3
inter_chan, out_chan = 32, 64
# ****** torch baseline *******
torch.backends.mkldnn.enabled = False
conv = 3
inter_chan, out_chan = 32, 64
c1 = torch.randn(inter_chan,1,conv,conv, requires_grad=True)
c2 = torch.randn(out_chan,inter_chan,conv,conv, requires_grad=True)
l1 = torch.randn(out_chan*5*5, 10, requires_grad=True)
c2d = torch.nn.functional.conv2d
mp = torch.nn.MaxPool2d((2,2))
lsm = torch.nn.LogSoftmax(dim=1)
cnt = 5
fpt, bpt = 0.0, 0.0
for i in range(cnt):
et0 = time.time()
x = torch.randn(128, 1, 28, 28, requires_grad=True)
x = mp(c2d(x,c1).relu())
x = mp(c2d(x,c2).relu())
x = x.reshape(x.shape[0], -1)
out = lsm(x.matmul(l1))
out = out.mean()
et1 = time.time()
out.backward()
et2 = time.time()
fpt += (et1-et0)
bpt += (et2-et1)
fpt_baseline = (fpt*1000/cnt)
bpt_baseline = (bpt*1000/cnt)
print("torch forward pass: %.3f ms" % fpt_baseline)
print("torch backward pass: %.3f ms" % bpt_baseline)
# ****** tinygrad compare *******
c1 = Tensor(c1.detach().numpy(), requires_grad=True)
c2 = Tensor(c2.detach().numpy(), requires_grad=True)
l1 = Tensor(l1.detach().numpy(), requires_grad=True)
cnt = 5
fpt, bpt = 0.0, 0.0
for i in range(1+cnt):
et0 = time.time()
x = Tensor.randn(128, 1, 28, 28)
x = x.conv2d(c1).relu().avg_pool2d()
x = x.conv2d(c2).relu().max_pool2d()
x = x.reshape(shape=(x.shape[0], -1))
out = x.dot(l1).log_softmax()
out = out.mean()
out.backward() # NOTE: we have to now compute this here, but it doesn't realize
out.realize()
et1 = time.time()
[x.grad.realize() for x in [c1, c2, l1]]
et2 = time.time()
if i == 0:
pr = Profiling(sort='time', frac=0.2)
pr.__enter__()
else:
fpt += (et1-et0)
bpt += (et2-et1)
pr.__exit__()
fpt = (fpt*1000/cnt)
bpt = (bpt*1000/cnt)
print("forward pass: %.3f ms, %.2fx off baseline %.3f ms" % (fpt, fpt/fpt_baseline, fpt_baseline))
print("backward pass: %.3f ms, %.2fx off baseline %.3f ms" % (bpt, bpt/bpt_baseline, bpt_baseline))
if __name__ == '__main__':
unittest.main()