openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

902 lines
34 KiB

import subprocess
import numpy as np
import torch
import unittest, copy, mmap, random, math, array
from tinygrad import Tensor, Device, dtypes
from tinygrad.helpers import getenv, temp, _METADATA, mv_address
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
from hypothesis import given, settings, strategies as strat
from tinygrad.device import is_dtype_supported
from tinygrad.ops import Ops, UOp
from tinygrad.runtime.support.compiler_cuda import PTX
from tinygrad.codegen.linearize import linearize_uop
from tinygrad.codegen.devectorizer import full_graph_rewrite
from tinygrad.codegen.lowerer import rewrite_shapetracker_with_index
from tinygrad.dtype import DType
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
settings.load_profile("my_profile")
x_init = np.random.randn(1,3).astype(np.float32)
U_init = np.random.randn(3,3).astype(np.float32)
V_init = np.random.randn(3,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
gradient = np.random.randn(1,3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
def test_zerodim_initialization(self):
self.assertEqual(Tensor(55).shape, ())
self.assertEqual(Tensor(3.14).shape, ())
def test_plus_equals(self):
a = Tensor.randn(10,10)
b = Tensor.randn(10,10)
c = a + b
val1 = c.numpy()
a += b
val2 = a.numpy()
np.testing.assert_allclose(val1, val2)
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.numpy(), x.grad.numpy(), W.grad.numpy()
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
# A simple test is to check that we can accumulate gradients (run backward twice or more times)
def test_accumulate_gradients(self):
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m).sum()
out.backward()
xgrad,wgrad = x.grad, W.grad
out.backward()
xgrad2,wgrad2 = x.grad, W.grad
out.backward() # no need to retain again since we will not re-run backward
xgrad3,wgrad3 = x.grad, W.grad
np.testing.assert_allclose(xgrad3.numpy(), xgrad.numpy() * 3., atol=1e-6)
np.testing.assert_allclose(wgrad3.numpy(), wgrad.numpy() * 3., atol=1e-6)
np.testing.assert_allclose(xgrad2.numpy(), xgrad.numpy() * 2., atol=1e-6)
np.testing.assert_allclose(wgrad2.numpy(), wgrad.numpy() * 2., atol=1e-6)
def test_second_order_backward_pass(self):
def test_pytorch():
x_val = torch.tensor([2.0], requires_grad=True)
f = x_val**3
first_derivative = torch.autograd.grad(outputs=f, inputs=x_val, create_graph=True)[0]
second_derivative = torch.autograd.grad(outputs=first_derivative, inputs=x_val)[0]
# d^2f/dx^2 = 6x = 6*2 = 12
return second_derivative.numpy()
def test_tinygrad():
x_val = Tensor(2.0)
f = x_val**3
first_derivative = f.gradient(x_val)[0]
second_derivative = first_derivative.gradient(x_val)[0]
return second_derivative.numpy()
np.testing.assert_allclose(test_tinygrad(), test_pytorch(), atol=1e-5)
# passing `gradient` to backward
def test_backward_pass_vjp(self):
def test_tinygrad():
x = Tensor(x_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
m = Tensor(m_init)
out = x.dot(W).relu()
out = out.log_softmax()
out = out.mul(m).add(m)
out.backward(Tensor(gradient))
return out.numpy(), x.grad.numpy(), W.grad.numpy()
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m)
out.backward(torch.tensor(gradient))
return out.detach().numpy(), x.grad, W.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_backward_pass_diamond_model(self):
def test_tinygrad():
u = Tensor(U_init, requires_grad=True)
v = Tensor(V_init, requires_grad=True)
w = Tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = out.log_softmax()
out = out.sum()
out.backward()
return out.numpy(), u.grad.numpy(), v.grad.numpy(), w.grad.numpy()
def test_pytorch():
u = torch.tensor(U_init, requires_grad=True)
v = torch.tensor(V_init, requires_grad=True)
w = torch.tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.sum()
out.backward()
return out.detach().numpy(), u.grad, v.grad, w.grad
for x,y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5, rtol=1e-6)
@unittest.expectedFailure
def test_const_backward_pass(self):
init = 3.5
def test_pytorch():
w1 = torch.tensor(init, requires_grad=True)
w2 = torch.tensor(init, requires_grad=True)
out = w1.add(w2)
out.backward()
return w1.grad, w2.grad
def test_tinygrad():
w1 = Tensor(init, requires_grad=True)
w2 = Tensor(init, requires_grad=True)
out = w1.add(w2)
out.backward()
return w1.grad.numpy(), w2.grad.numpy()
for x, y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_nograd(self):
x = Tensor(x_init, requires_grad=False)
m = Tensor(m_init, requires_grad=False)
W = Tensor(W_init, requires_grad=True)
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is not None
assert W.grad is not None
def test_dropout(self):
with Tensor.train():
n, rate = 1_000_000, 0.1
w = Tensor.ones(n).dropout(rate)
non_zeros = np.count_nonzero(w.numpy())
expected = n * (1 - rate)
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
def test_jacobian(self):
W = np.random.RandomState(42069).random((10, 5)).astype(np.float32)
x = np.random.RandomState(69420).random((1, 10)).astype(np.float32)
torch_x = torch.tensor(x, requires_grad=True)
torch_W = torch.tensor(W, requires_grad=True)
def torch_func(x): return torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
tiny_x = Tensor(x, requires_grad=True)
tiny_W = Tensor(W, requires_grad=True)
def tiny_func(x): return x.dot(tiny_W).relu().log_softmax()
J = jacobian(tiny_func, tiny_x)
NJ = numerical_jacobian(tiny_func, tiny_x)
np.testing.assert_allclose(PJ, J, atol = 1e-5)
np.testing.assert_allclose(PJ, NJ, atol = 1e-3)
def test_gradcheck(self):
W = np.random.RandomState(1337).random((10, 5)).astype(np.float32)
x = np.random.RandomState(7331).random((1, 10)).astype(np.float32)
tiny_x = Tensor(x, requires_grad=True)
tiny_W = Tensor(W, requires_grad=True)
def tiny_func(x): return x.dot(tiny_W).relu().log_softmax()
self.assertTrue(gradcheck(tiny_func, tiny_x, eps = 1e-3))
# coarse approx. since a "big" eps and the non-linearities of the model
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 1e-5))
def test_random_fns_are_deterministic_with_seed(self):
for random_fn in [Tensor.randn, Tensor.normal, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform, Tensor.kaiming_normal]:
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
Tensor.manual_seed(1337)
a = random_fn(10,10).realize()
Tensor.manual_seed(1337)
b = random_fn(10,10).realize()
np.testing.assert_allclose(a.numpy(), b.numpy())
def test_randn_isnt_inf_on_zero(self):
# simulate failure case of rand handing a zero to randn
original_rand, Tensor.rand = Tensor.rand, Tensor.zeros
try: self.assertNotIn(np.inf, Tensor.randn(16).numpy())
except: raise
finally: Tensor.rand = original_rand
def test_zeros_like_has_same_dtype_and_shape(self):
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
a = Tensor([1, 2, 3], dtype=datatype)
b = Tensor.zeros_like(a)
assert a.dtype == b.dtype, f"dtype mismatch {a.dtype=} != {b.dtype}"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
a = Tensor([1, 2, 3])
b = Tensor.zeros_like(a, dtype=dtypes.int8)
assert a.dtype == dtypes.default_int and b.dtype == dtypes.int8, "a.dtype should be int and b.dtype should be char"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
def test_ones_like_has_same_dtype_and_shape(self):
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
a = Tensor([1, 2, 3], dtype=datatype)
b = Tensor.ones_like(a)
assert a.dtype == b.dtype, f"dtype mismatch {a.dtype=} != {b.dtype}"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
a = Tensor([1, 2, 3])
b = Tensor.ones_like(a, dtype=dtypes.int8)
assert a.dtype == dtypes.default_int and b.dtype == dtypes.int8, "a.dtype should be int and b.dtype should be char"
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
def test_rand_like_device(self):
a = Tensor.ones(3, 3, device="CPU")
b = Tensor.rand_like(a)
self.assertEqual(b.device, a.device)
def test_ndim(self):
assert Tensor(1).ndim == 0
assert Tensor.randn(1).ndim == 1
assert Tensor.randn(2,2,2).ndim == 3
assert Tensor.randn(1,1,1,1,1,1).ndim == 6
def test_argfix(self):
for f in [Tensor.zeros, Tensor.ones, Tensor.rand, Tensor.randn, Tensor.empty]:
self.assertEqual(f().shape, ())
self.assertEqual(f(1).shape, (1,))
self.assertEqual(f(10,20,40).shape, (10,20,40))
self.assertEqual(f([]).shape, ())
self.assertEqual(f([1]).shape, (1,))
self.assertEqual(f([10,20,40]).shape, (10,20,40))
self.assertEqual(f(()).shape, ())
self.assertEqual(f((1,)).shape, (1,))
self.assertEqual(f((10,20,40)).shape, (10,20,40))
with self.assertRaises(ValueError): f((2, 2), 2, 2)
with self.assertRaises(ValueError): f((2, 2), (2, 2))
with self.assertRaises(ValueError): f((128, 128), 0.0, 0.01)
def test_numel(self):
assert Tensor.randn(10, 10).numel() == 100
assert Tensor.randn(1,2,5).numel() == 10
assert Tensor.randn(1,1,1,1,1,1).numel() == 1
assert Tensor([]).numel() == 0
assert Tensor.randn(1,0,2,5).numel() == 0
assert Tensor(3).numel() == 1
def test_len(self):
assert len(torch.zeros(7)) == len(Tensor.zeros(7))
assert len(torch.zeros(10,20)) == len(Tensor.zeros(10,20))
assert len(torch.zeros(10,20)) == len(Tensor.zeros(10,20,30))
assert len(torch.zeros(1).flatten()) == len(Tensor.zeros(1).flatten())
with self.assertRaises(TypeError): len(Tensor(3))
def test_size(self):
t1, t2 = torch.zeros(10,20), Tensor.zeros(10,20)
assert t1.size() == t2.size()
assert t1.size(0) == t2.size(0)
assert t1.size(1) == t2.size(1)
assert t1.size(-1) == t2.size(-1)
assert t1.size(-2) == t2.size(-2)
with self.assertRaises(IndexError): t2.size(2)
def test_tolist(self):
# NOTE: float16 Tensor.tolist() requires python 3.12
for arr in [[1,2,3], [1.5,2,3], [[1,2,3], [4,5,6]], 3]:
assert Tensor(arr).tolist() == torch.tensor(arr).tolist() == arr
def test_element_size(self):
for _, dtype in dtypes.fields().items():
assert dtype.itemsize == Tensor.randn(3, dtype=dtype).element_size(), f"Tensor.element_size() not matching Tensor.dtype.itemsize for {dtype}"
def test_deepwalk_ctx_check(self):
layer = Tensor.uniform(1, 1, requires_grad=True)
x = Tensor.randn(1, 1, 1)
x.dot(layer).mean().backward()
x = Tensor.randn(1, 1, 1)
x.dot(layer).mean().backward()
def test_zerosized_tensors(self):
np.testing.assert_equal(Tensor([]).numpy(), np.array([]))
np.testing.assert_equal(Tensor(None).numpy(), np.array([]))
def test_tensor_ndarray_dtype(self):
arr = np.array([1]) # where dtype is implicitly int64
assert Tensor(arr).dtype == dtypes.int64
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32 # check if ndarray correctly casts to Tensor dtype
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64 # check that it works for something else
def test_tensor_from_blob(self):
x = memoryview(bytearray(16)).cast('I')
t = Tensor.from_blob(mv_address(x), (4,), dtype=dtypes.int, device="CPU")
z = (t+1)
np.testing.assert_equal(z.numpy(), [1, 1, 1, 1])
x[:] = array.array('I', [0, 1, 2, 3])
z = (t+1)
np.testing.assert_equal(z.numpy(), [1, 2, 3, 4])
def test_tensor_list_dtype(self):
for arr in ([1], [[[1]]], [[1,1],[1,1]], [[[1,1],[1,1]],[[1,1],[1,1]]]):
assert Tensor(arr).dtype == dtypes.default_int
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
for arr in ([True], [[[False]]], [[True,False],[True,False]], [[[False,True],[False,False]],[[True,True],[False,True]]]):
assert Tensor(arr).dtype == dtypes.bool
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
# empty tensor defaults
for arr in ([], [[[]]], [[],[]]):
t = Tensor(arr)
assert t.dtype == dtypes.default_float
np.testing.assert_allclose(t.numpy(), np.array(arr))
# mixture of bool and int
for arr in ([True, 3], [[True],[3]], [[[True]], [[3]]], [[True, 3], [3, True]]):
t = Tensor(arr)
assert t.dtype == dtypes.default_int
np.testing.assert_allclose(t.numpy(), np.array(arr))
# mixture of bool, int and float
for arr in ([[True,True],[3.,True]], [[0,1],[3.,4]], [[[0],[1]],[[3.],[4]]], [[[True],[1]],[[3.],[4]]]):
t = Tensor(arr)
assert t.dtype == dtypes.default_float
np.testing.assert_allclose(t.numpy(), np.array(arr))
def test_tensor_list_shapes(self):
self.assertEqual(Tensor([[[]]]).shape, (1,1,0))
self.assertEqual(Tensor([[],[]]).shape, (2,0))
self.assertEqual(Tensor([[[[]],[[]]], [[[]],[[]]], [[[]],[[]]]]).shape, (3,2,1,0))
def test_tensor_list_errors(self):
# inhomogeneous shape
with self.assertRaises(ValueError): Tensor([[],[[]]])
with self.assertRaises(ValueError): Tensor([[1],[]])
with self.assertRaises(ValueError): Tensor([[1],[1],1])
with self.assertRaises(ValueError): Tensor([[[1,1,1],[1,1]]])
with self.assertRaises(ValueError): Tensor([[1,1,1],[[1,1,1]]])
def test_tensor_mixed_list_tuple(self):
def _list_or_tuple(): return list if random.random() < 0.5 else tuple
def _generate_data(depth):
if depth == 0: return _list_or_tuple()()
if depth == 1: return _list_or_tuple()([random.random(), random.random()])
return _list_or_tuple()([_generate_data(depth-1), _generate_data(depth-1)])
for depth in range(7):
for _ in range(20):
data = _generate_data(depth)
np.testing.assert_allclose(Tensor(data).numpy(), np.array(data))
def test_tensor_list_special_values(self):
if is_dtype_supported(dtypes.float16):
data = [math.nan, -math.inf, 65504, 65519, 65519.999, 65520, 65520.1]
data = data + [-x for x in data]
with np.errstate(over='ignore'): np.testing.assert_allclose(Tensor(data, dtype=dtypes.float16).numpy(), np.array(data).astype(np.float16))
# uint32
data = [1 << 33, 1 << 32, 1 << 32 - 1, 1]
data = data + [-x for x in data]
np.testing.assert_allclose(Tensor(data, dtype=dtypes.uint32).numpy(), np.array(data).astype(np.uint32))
# int32
data = [1 << 33, 1 << 32, 1 << 32 - 1, 1]
data = data + [-x for x in data]
np.testing.assert_allclose(Tensor(data, dtype=dtypes.int32).numpy(), np.array(data).astype(np.int32))
def test_tensor_list_ndarray(self):
data = [np.array([1, 2, 3]), np.array([1, 2, 3]), np.array([1, 2, 3])]
np.testing.assert_equal(Tensor(data).numpy(), np.array(data))
data = [np.array([1.0, 2.0, 3.0]), np.array([1, 2, 3]), np.array([1, 2, 3])]
np.testing.assert_equal(Tensor(data).numpy(), np.array(data))
data = [np.array(1.0), np.array(2.0), np.array(3.0)]
np.testing.assert_equal(Tensor(data).numpy(), np.array(data))
def test_tensor_dtype_errors(self):
with self.assertRaises(AttributeError): Tensor([3], dtype="typo")
with self.assertRaises(AttributeError): Tensor([3], dtype=(dtypes.int,))
def test_tensor_bytes(self):
data = b"abc123"
t = Tensor(data)
assert t.dtype == dtypes.uint8
assert t.shape == (6,)
np.testing.assert_equal(t.numpy(), list(data))
def test_tensor_copy(self):
x = copy.deepcopy(Tensor.ones((3,3,3)))
np.testing.assert_allclose(x.numpy(), np.ones((3,3,3)))
def test_copy_from_disk(self):
t = Tensor.randn(30).to(f"disk:{temp('test_copy_from_disk')}")
a = t[10:20]
dev = a.to(Device.DEFAULT)
np.testing.assert_allclose(a.numpy(), dev.numpy())
# Regression test for https://github.com/tinygrad/tinygrad/issues/1751
def test_copy_from_numpy_unaligned(self):
# 2**15 is the minimum for repro
arr = np.random.randn(2**15).astype(np.float32)
fn = temp('test_copy_from_numpy_unaligned')
with open(fn, 'wb') as f: f.write(b't' + arr.tobytes())
with open(fn, "a+b") as f: memview = memoryview(mmap.mmap(f.fileno(), arr.nbytes + 1))
ua_arr = np.frombuffer(memview[1:], dtype=arr.dtype, count=arr.shape[0])
np.testing.assert_allclose(arr, ua_arr)
assert not ua_arr.flags.aligned
# force device copy - to() is opt'd away - Tensor(dev)/1 is ignored
np.testing.assert_allclose(ua_arr, (Tensor(ua_arr)/Tensor(1)).numpy())
def test_item_to_tensor_to_item(self):
for a in [0, 1, 2, 3, -1, -100, 100, -101.1, 2.345, 100.1, True, False]:
item = Tensor(a).item()
assert type(item) is type(a), a
np.testing.assert_allclose(item, a), a
buffered_item = Tensor([a]).item()
assert type(buffered_item) is type(a), a
np.testing.assert_allclose(buffered_item, a), a
reshaped_item = Tensor([a]).reshape((1, 1, 1, 1, 1)).item()
assert type(reshaped_item) is type(a), a
np.testing.assert_allclose(reshaped_item, a), a
def test_no_bool(self):
with self.assertRaises(TypeError):
if Tensor(3):
print("hi")
with self.assertRaises(TypeError):
_a = Tensor([3]) in [Tensor([3]), Tensor([4]), Tensor([5])]
def test_repr_with_grad(self):
a = Tensor([1], requires_grad=True)
b = Tensor([1])
c = (a + b).sum().backward()
print(a)
print(c)
def test_env_overwrite_default_device(self):
subprocess.run(['DISK=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT != \\"DISK\\""'],
shell=True, check=True)
subprocess.run(['NPY=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT != \\"NPY\\""'],
shell=True, check=True)
subprocess.run([f'{Device.DEFAULT}=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT == \\"{Device.DEFAULT}\\""'],
shell=True, check=True)
subprocess.run([f'DISK=1 {Device.DEFAULT}=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT == \\"{Device.DEFAULT}\\""'],
shell=True, check=True)
subprocess.run([f'NPY=1 {Device.DEFAULT}=1 python3 -c "from tinygrad import Device; assert Device.DEFAULT == \\"{Device.DEFAULT}\\""'],
shell=True, check=True)
def test_no_attributeerror_after_apply_uop_exception(self):
try:
Tensor.arange(4).reshape(3,2)
except ValueError:
Tensor.zeros(2, 2).realize()
@unittest.skip("this test is just flaky, sync issue")
class TestMoveTensor(unittest.TestCase):
d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"
@given(strat.sampled_from([d0, d1]), strat.sampled_from([d0, d1]),
strat.sampled_from([dtypes.float16, dtypes.float32]), strat.sampled_from([True, False, None]))
def test_to_preserves(self, src, dest, dtype, requires_grad):
if not is_dtype_supported(dtype):
return
s = Tensor([1, 2, 3], device=src, dtype=dtype, requires_grad=requires_grad)
if requires_grad: s.sum().backward()
t = s.to(dest)
np.testing.assert_equal(s.numpy(), t.numpy())
assert s.dtype == t.dtype
assert s.requires_grad == t.requires_grad
if requires_grad:
np.testing.assert_equal(s.grad.numpy(), t.grad.numpy())
@given(strat.sampled_from([dtypes.float16, dtypes.float32]), strat.sampled_from([True, False, None]))
def test_shard_preserves(self, dtype, requires_grad):
s = Tensor([1, 2, 3], dtype=dtype, requires_grad=requires_grad)
t = s.shard((f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"))
np.testing.assert_equal(s.numpy(), t.numpy())
assert s.dtype == t.dtype
assert s.requires_grad == t.requires_grad
@given(strat.sampled_from([d0, d1]))
def test_same_dev(self, dev):
x = Tensor([1,2,3], device=dev)
y = x.to(dev)
assert x is y
def test_to_grad(self):
x = Tensor.eye(3, requires_grad=True, device=self.d0)
y = Tensor([[2.0,0,-2.0]], requires_grad=True, device=self.d0)
z = y.matmul(x).to(self.d1).sum()
z.backward()
np.testing.assert_equal(x.grad.numpy(), [[2,2,2],[0,0,0],[-2,-2,-2]])
class TestZeroShapeTensor(unittest.TestCase):
def test_shape_stride(self):
t = Tensor.empty(3, 2, 0)
assert t.shape == (3, 2, 0)
# numpy has stride 0, 0, 0; torch has stride 2, 1, 1
assert t.lazydata.st.real_strides() == (0, 0, 0)
t = Tensor.empty(3, 0, 2)
assert t.shape == (3, 0, 2)
# numpy has stride 0, 0, 0; torch has stride 2, 2, 1
assert t.lazydata.st.real_strides() == (0, 0, 0)
t = Tensor.empty(0, 0, 0)
assert t.shape == (0, 0, 0)
# numpy has stride 0, 0, 0; torch has stride 1, 1, 1
assert t.lazydata.st.real_strides() == (0, 0, 0)
def test_rand(self):
t = Tensor.rand(3, 2, 0)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
t = Tensor.rand(0)
assert t.shape == (0,)
np.testing.assert_equal(t.numpy(), np.zeros((0,)))
t = Tensor.rand(0, 0, 0)
assert t.shape == (0, 0, 0)
np.testing.assert_equal(t.numpy(), np.zeros((0, 0, 0)))
def test_full(self):
t = Tensor.zeros(3, 2, 0)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
t = Tensor.full((3, 2, 0), 12)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.full((3, 2, 0), 12))
def test_reshape(self):
t = Tensor.zeros(3, 2, 0)
a = t.reshape(7, 0)
assert a.shape == (7, 0)
np.testing.assert_equal(a.numpy(), np.zeros((7, 0)))
a = t.reshape(0)
assert a.shape == (0,)
np.testing.assert_equal(a.numpy(), np.zeros((0,)))
with self.assertRaises(ValueError):
# cannot reshape from size 0 to size 1
a = t.reshape(())
def test_expand(self):
t = Tensor.full((1, 2, 0), 12).expand((6, 2, 0))
assert t.shape == (6, 2, 0)
np.testing.assert_equal(t.numpy(), np.full((6, 2, 0), 12))
def test_pad(self):
t = Tensor.rand(3, 2, 0).pad((None, None, (1, 1)), value=1)
assert t.shape == (3, 2, 2)
np.testing.assert_equal(t.numpy(), np.ones((3, 2, 2)))
t = Tensor.rand(3, 2, 0).pad((None, (1, 1), None), value=1)
assert t.shape == (3, 4, 0)
np.testing.assert_equal(t.numpy(), np.ones((3, 4, 0)))
t = Tensor.rand(3, 2, 0).pad(((1, 1), None, None), value=1)
assert t.shape == (5, 2, 0)
np.testing.assert_equal(t.numpy(), np.ones((5, 2, 0)))
def test_shrink_into_zero(self):
t = Tensor.rand(3, 4).realize()
assert t.shrink((None, (2, 2))).realize().shape == (3, 0)
assert t.shrink(((2, 2), None)).realize().shape == (0, 4)
assert t.shrink(((2, 2), (2, 2))).realize().shape == (0, 0)
def test_cat(self):
a = Tensor.rand(3, 2, 2)
b = Tensor.rand(3, 2, 0)
t = a.cat(b, dim=2)
assert t.shape == (3, 2, 2)
np.testing.assert_equal(t.numpy(), a.numpy())
t = b.cat(a, dim=2)
assert t.shape == (3, 2, 2)
np.testing.assert_equal(t.numpy(), a.numpy())
t = b.cat(b, dim=0)
assert t.shape == (6, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((6, 2, 0)))
t = b.cat(b, dim=1)
assert t.shape == (3, 4, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 4, 0)))
t = b.cat(b, dim=2)
assert t.shape == (3, 2, 0)
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
def test_elementwise(self):
a = Tensor.rand(3, 2, 0)
a_exp = a.exp()
assert a_exp.shape == (3, 2, 0)
np.testing.assert_equal(a_exp.numpy(), np.exp(a.numpy()))
b = Tensor.rand(3, 2, 0)
assert b.shape == (3, 2, 0)
ab = a * b
assert ab.shape == (3, 2, 0)
np.testing.assert_equal(ab.numpy(), a.numpy() * b.numpy())
mask = (Tensor.rand(3, 2, 0) > 0.5)
assert mask.shape == (3, 2, 0)
c = mask.where(a, b)
assert c.shape == (3, 2, 0)
np.testing.assert_equal(c.numpy(), np.where(mask.numpy(), a.numpy(), b.numpy()))
def test_reduce_over_non_zero(self):
a = Tensor.ones(3, 2, 0).sum(axis=1)
assert a.shape == (3, 0)
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=1))
def test_reduce_over_zero(self):
a = Tensor.ones(3, 2, 0).sum(axis=2)
assert a.shape == (3, 2)
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2))
a = Tensor.ones(3, 2, 0).sum(axis=2, keepdim=True)
assert a.shape == (3, 2, 1)
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2, keepdims=True))
def test_clone(self):
a = Tensor.rand(16, 16).realize()
b = a.clone()
np.testing.assert_allclose(a.numpy(), b.numpy())
self.assertIsNot(a.lazydata.base.buffer, b.lazydata.base.buffer)
a = Tensor.rand(16, 16).mul(5.0).add(5.0)
b = a.clone()
np.testing.assert_allclose(a.numpy(), b.numpy())
self.assertIsNot(a.lazydata.base.buffer, b.lazydata.base.buffer)
def test_clone_with_shrink(self):
a = Tensor.rand(16, 16)
b = a.shrink(((2, 10), None)).clone()
b.realize()
self.assertIsNot(a.lazydata.base.buffer, b.lazydata.base.buffer)
def test_clone_with_shrink_realized(self):
a = Tensor.rand(16, 16).realize()
b = a.shrink(((2, 10), None)).clone()
b.realize()
self.assertIsNot(a.lazydata.base.buffer, b.lazydata.base.buffer)
def test_clone_with_grad(self):
a = Tensor.rand(16, 16, requires_grad=True)
a.mul(5.0).add(5.0).mean().backward()
b = a.clone()
assert a.grad is not None
assert b.grad is not None
np.testing.assert_allclose(a.grad.numpy(), b.grad.numpy())
def test_reduce_default(self):
np.testing.assert_equal(Tensor([]).max().numpy(), -float("inf"))
np.testing.assert_equal(Tensor([]).min().numpy(), float("inf"))
np.testing.assert_equal(Tensor([]).sum().numpy(), 0)
np.testing.assert_equal(Tensor([]).mean().numpy(), float("nan"))
class TestTensorCreationDevice(unittest.TestCase):
# test auxiliary tensors are created on the same device
def test_one_hot(self):
y = Tensor([1, 2, 3]).to("CPU")
x = y.one_hot(10)
x.realize()
class TestTrainMode(unittest.TestCase):
def test_train_mode(self):
assert not Tensor.training
@Tensor.train()
def f():
assert Tensor.training
f()
assert not Tensor.training
class TestInferenceMode(unittest.TestCase):
def test_inference(self):
x = Tensor(x_init, requires_grad=True)
m = Tensor(m_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
with Tensor.test():
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is None
assert W.grad is None
assert W.requires_grad
def test_no_grad_mode_context_manager(self):
x = Tensor(x_init, requires_grad=True)
m = Tensor(m_init, requires_grad=True)
W = Tensor(W_init, requires_grad=True)
@Tensor.test()
def f(x, m, W):
tmp = x.mul(m)
mm = tmp.matmul(W)
out = mm.relu()
out = out.sum()
out.backward()
assert x.grad is None
assert m.grad is None
assert tmp.grad is None
assert mm.grad is None
assert W.grad is None
f(x, m, W)
class TestTensorMetadata(unittest.TestCase):
def setUp(self) -> None: _METADATA.set(None)
# NOOPs are not included in kernel metadata
def test_exclude_noop_metadata(self):
a = Tensor.rand(4, 4)*1
self.assertEqual(a.lazydata.metadata.name, "__mul__")
k = a.schedule()[-1]
self.assertEqual([m.name for m in k.metadata], ["rand"])
# we exclude const from kernel metadata because tensor methods can share the same CONST UOp
@unittest.skip("TODO: flaky")
def test_exclude_const_metadata(self):
a = Tensor.arange(4)
b = Tensor.full((4,), -1, dtype=dtypes.int).contiguous()
sched = Tensor.schedule(a, b)
self.assertEqual([m.name for m in sched[0].metadata], ["arange"])
self.assertEqual([m.name for m in sched[1].metadata], ["contiguous"])
def test_matmul(self):
x = Tensor.rand(3, requires_grad=True)
W = Tensor.rand(3, 3, requires_grad=True)
out = x.matmul(W)
self.assertEqual(out.lazydata.metadata.name, "matmul")
si = out.schedule()[-1]
self.assertEqual(len(si.metadata), 1)
self.assertEqual(si.metadata[0].name, "matmul")
def test_relu(self):
x = Tensor.rand(3, requires_grad=True)
out = x.relu()
self.assertEqual(out.lazydata.metadata.name, "relu")
si = out.schedule()[-1]
self.assertEqual(len(si.metadata), 1)
self.assertEqual(si.metadata[0].name, "relu")
def test_complex(self):
x = Tensor.rand(3, requires_grad=True)
y = Tensor.rand(3, requires_grad=True)
out = x.relu() * y.sigmoid()
self.assertEqual(out.lazydata.metadata.name, "__mul__")
self.assertEqual(out.lazydata.src[0].metadata.name, "relu")
self.assertEqual(out.lazydata.src[1].metadata.name, "sigmoid")
si = out.schedule()[-1]
self.assertEqual(len(si.metadata), 3)
self.assertEqual(set(m.name for m in si.metadata), {"relu", "sigmoid", "__mul__"})
def test_complex_backward(self):
x = Tensor.rand(3, requires_grad=True).realize()
y = Tensor.rand(3, requires_grad=True).realize()
out = (x.relu() * y.sigmoid()).sum()
self.assertEqual(out.lazydata.metadata.name, "sum")
out.backward()
self.assertEqual(x.grad.lazydata.metadata.name, "relu")
self.assertTrue(x.grad.lazydata.metadata.backward)
self.assertEqual(y.grad.lazydata.metadata.name, "sigmoid")
self.assertTrue(y.grad.lazydata.metadata.backward)
si = Tensor.schedule(out, x.grad, y.grad)[-1]
self.assertEqual(len(si.metadata), 3, f"failed with {si.metadata}")
self.assertEqual(set(m.name for m in si.metadata), {"sigmoid", "sigmoid", "relu"})
bw = [m for m in si.metadata if m.backward]
self.assertEqual(len(bw), 1)
self.assertEqual(bw[0].name, "sigmoid")
class TestIdxUpcast(unittest.TestCase):
def _find_op(self, ast: UOp, op: Ops):
if ast.op is op: return ast
for src in ast.src:
if (ret:=self._find_op(src, op)) is not None: return ret
def _schedule_render(self, a: Tensor):
schedule, _ = a.schedule_with_vars()
for s in schedule:
if s.ast.op is Ops.SINK:
renderer = Device[s.bufs[0].device].renderer
uops = linearize_uop(full_graph_rewrite(rewrite_shapetracker_with_index(s.ast, renderer), renderer))
renderer.render(uops)
return uops
def _assert(self, dtype: DType, a: Tensor):
uops = self._schedule_render(a)
# Assert the dtype of the INDEX value, This will need be updated if UOp spec changes
store = next(uop for uop in uops if uop.op is Ops.STORE)
assert store.op is Ops.STORE
idx = self._find_op(store, Ops.INDEX)
if idx is not None: # PTX turns Ops.INDEX into pointer arithmetic earlier than cstyle, plus it's already cast to int64
assert idx.op is Ops.INDEX
idx_val = idx.src[1]
assert idx_val.dtype is dtype
# use expand to generate kernel that uses large idx
def do_op_then_assert(self, dtype: DType, dim1, dim2, dim3):
self._assert(dtype, Tensor.empty(dim1, dim2, 1).expand(-1, -1, dim3).contiguous())
@unittest.skipUnless(is_dtype_supported(dtypes.long), "int64 is supported")
def test_overflow(self):
# 2**11, 2**11, 2**11 -> 2**33 will overflow when indexed
self.do_op_then_assert(dtypes.long, 2048, 2048, 2048)
@unittest.skipUnless(is_dtype_supported(dtypes.long), "int64 is supported")
def test_overflow_sym(self):
self.do_op_then_assert(dtypes.long, 2048, 2048, UOp.variable("dim3", 0, 2048).bind(32))
def test_regular(self):
self.do_op_then_assert(dtypes.int, 64, 64, 64)
def test_regular_sym(self):
self.do_op_then_assert(dtypes.int, 2048, 2048, UOp.variable("dim3", 0, 64).bind(32))
@unittest.skipIf(PTX, "PTX always convert Ops.INDEX to int64")
def test_symfold(self):
# This would cause an overflow, but after sym fold it's within int32
a = Tensor.arange(65535)
uops = self._schedule_render(a)
assert all(uop.dtype is not dtypes.long for uop in uops)
@unittest.skipIf(is_dtype_supported(dtypes.long), "int64 is supported")
def test_int64_unsupported_overflow_sym(self):
with self.assertRaises(KeyError):
self.do_op_then_assert(dtypes.long, 2048, 2048, UOp.variable("dim3", 0, 2048).bind(32))
@unittest.skipIf(is_dtype_supported(dtypes.long), "int64 is supported")
def test_int64_unsupported_overflow(self):
with self.assertRaises(KeyError):
self.do_op_then_assert(dtypes.long, 2048, 2048, 2048)
@unittest.skip("This is kept for reference, it requires large memory to run")
def test_overflow_kernel_run(self):
# This creates a total of 2**31+10 elements, requiring at least 2147 MB memory to run
# Modified example from issue 3271
a = Tensor.empty(2**11, 2**11, 1, dtype=dtypes.int8).permute((2, 0, 1)).expand((2**9+10, -1, -1)).contiguous()
a.realize()
if __name__ == '__main__':
unittest.main()