openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

122 lines
4.0 KiB

#!/usr/bin/env python
import numpy as np
import unittest
from tinygrad import Tensor, Device, dtypes
from tinygrad.engine.realize import run_schedule
from tinygrad.ops import Ops, UOp, UPat
class TestTensorUOp(unittest.TestCase):
def test_fromcpu_shape_tracker(self):
def helper(a: np.ndarray):
print(a.shape, a.strides, a.flags.c_contiguous)
b = Tensor(a).lazydata
#assert b.st.contiguous == a.flags.c_contiguous
assert b.st.shape == a.shape
np.testing.assert_equal(a, Tensor(b).numpy())
for ndims in range(1, 4):
a = np.random.randn(*(4,)*ndims).astype(np.float32)
for stride in [-2, 1, 2]:
for start in [0, 1]:
helper(a[(slice(start, None, stride),)*ndims])
def test_shuffle_pad_ops_cmpeq(self):
y = Tensor([1]).cat(Tensor([1]) == 0).numpy()
z = Tensor([1, 0]).numpy()
np.testing.assert_allclose(y, z)
def test_shuffle_pad_ops_div(self):
y = Tensor([1]).cat(Tensor([1]).div(Tensor([2.0]))).numpy()
z = Tensor([1, 0.5]).numpy()
np.testing.assert_allclose(y, z)
def test_shuffle_pad_ops_log(self):
y = Tensor([1]).cat(Tensor([1]).log()).numpy()
z = Tensor([1, 0]).numpy()
np.testing.assert_allclose(y, z)
def test_shuffle_pad_ops_exp(self):
y = Tensor([1]).cat(Tensor([1]).exp()).numpy()
z = Tensor([1, np.e]).numpy()
np.testing.assert_allclose(y, z)
def test_device_0_is_the_same_device(self):
a = Tensor([1, 2, 3], f"{Device.DEFAULT}")
b = Tensor([1, 2, 3], f"{Device.DEFAULT}:0")
assert a.device == b.device
def test_shrink_const_into_zero(self):
# regression test to make sure the shapetracker is preserved
a = Tensor.zeros(4,4,4).shrink((None, (0,0), None))
b = Tensor.zeros(4,1,4)
c = a.cat(b, dim=1)
np.testing.assert_allclose(c.numpy(), np.concatenate((a.numpy(), b.numpy()), axis=1))
def test_shrink_const_then_cast(self):
# regression test to make sure the shapetracker is preserved
a = Tensor.zeros(4,4,4).shrink((None, (0,0), None)).cast(dtypes.int32)
b = Tensor.zeros(4,1,4)
c = a.cat(b, dim=1)
np.testing.assert_allclose(c.numpy(), np.concatenate((a.numpy(), b.numpy()), axis=1))
def test_const_dtype(self):
lb: UOp = Tensor([1], dtype=dtypes.int).lazydata
assert lb.const_like(1).base.arg == 1
assert type(lb.const_like(1).base.arg) is int
lb: UOp = Tensor([1], dtype=dtypes.float).lazydata
assert lb.const_like(1).base.arg == 1.0
assert type(lb.const_like(1).base.arg) is float
def test_contiguous_alu(self):
a = Tensor.randn(2, 2).realize()
b = Tensor.randn(2, 2).realize()
add = (a+b).contiguous()
out = add+2
sched = out.schedule()
self.assertEqual(len(sched), 2)
run_schedule(sched)
np.testing.assert_allclose(out.numpy(), a.numpy()+b.numpy()+2)
# NOTE: contiguous on a buffer collapses
def test_contiguous_empty(self):
empty = Tensor.empty(1).contiguous()
sched = empty.schedule()
self.assertEqual(len(sched), 0)
def test_contiguous_folded_alu(self):
a = Tensor.empty(8, 8)
# NOTE: the buffer for mul_0 late folds to just a CONST
mul_0 = a*0
out = mul_0.shrink(((4, 8), (0, 8))).contiguous()
out.realize()
self.assertEqual(out.tolist(), Tensor.zeros(4, 8).tolist())
reduce_kernel = UPat(Ops.SINK, src=(UPat(Ops.STORE, src=(UPat(), UPat(), UPat(Ops.REDUCE_AXIS)))))
class TestReduceOp(unittest.TestCase):
def test_no_split_reduce_kernel(self):
a = Tensor.rand(4, 4).realize()
a = a.sum()
sched = a.schedule()
assert len(sched) == 1
assert reduce_kernel.match(sched[0].ast, {})
def test_split_reduce_kernel_dim0(self):
a = Tensor.rand(256, 255).realize()
a = a.sum()
sched = a.schedule()
assert len(sched) == 2
for s in sched:
assert reduce_kernel.match(s.ast, {})
def test_split_reduce_kernel_dim1(self):
a = Tensor.rand(255, 256).realize()
a = a.sum()
sched = a.schedule()
assert len(sched) == 2
for s in sched:
assert reduce_kernel.match(s.ast, {})
if __name__ == "__main__":
unittest.main()