openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
5.2 KiB

# functions common among cars
from common.numpy_fast import clip
# kg of standard extra cargo to count for drive, gas, etc...
STD_CARGO_KG = 136.
def gen_empty_fingerprint():
return {i: {} for i in range(0, 4)}
# FIXME: hardcoding honda civic 2016 touring params so they can be used to
# scale unknown params for other cars
class CivicParams:
MASS = 1326. + STD_CARGO_KG
WHEELBASE = 2.70
CENTER_TO_FRONT = WHEELBASE * 0.4
CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT
ROTATIONAL_INERTIA = 2500
TIRE_STIFFNESS_FRONT = 192150
TIRE_STIFFNESS_REAR = 202500
# TODO: get actual value, for now starting with reasonable value for
# civic and scaling by mass and wheelbase
def scale_rot_inertia(mass, wheelbase):
return CivicParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (CivicParams.MASS * CivicParams.WHEELBASE ** 2)
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
# mass and CG position, so all cars will have approximately similar dyn behaviors
def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor=1.0):
center_to_rear = wheelbase - center_to_front
tire_stiffness_front = (CivicParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / CivicParams.MASS * \
(center_to_rear / wheelbase) / (CivicParams.CENTER_TO_REAR / CivicParams.WHEELBASE)
tire_stiffness_rear = (CivicParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / CivicParams.MASS * \
(center_to_front / wheelbase) / (CivicParams.CENTER_TO_FRONT / CivicParams.WHEELBASE)
return tire_stiffness_front, tire_stiffness_rear
def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None):
return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc}
def apply_std_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS):
# limits due to driver torque
driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0)
min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0)
apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed)
# slow rate if steer torque increases in magnitude
if apply_torque_last > 0:
apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
apply_torque_last + LIMITS.STEER_DELTA_UP)
else:
apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP,
min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
return int(round(float(apply_torque)))
def apply_toyota_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS):
# limits due to comparison of commanded torque VS motor reported torque
max_lim = min(max(motor_torque + LIMITS.STEER_ERROR_MAX, LIMITS.STEER_ERROR_MAX), LIMITS.STEER_MAX)
min_lim = max(min(motor_torque - LIMITS.STEER_ERROR_MAX, -LIMITS.STEER_ERROR_MAX), -LIMITS.STEER_MAX)
apply_torque = clip(apply_torque, min_lim, max_lim)
# slow rate if steer torque increases in magnitude
if apply_torque_last > 0:
apply_torque = clip(apply_torque,
max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
apply_torque_last + LIMITS.STEER_DELTA_UP)
else:
apply_torque = clip(apply_torque,
apply_torque_last - LIMITS.STEER_DELTA_UP,
min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
return int(round(float(apply_torque)))
def crc8_pedal(data):
crc = 0xFF # standard init value
poly = 0xD5 # standard crc8: x8+x7+x6+x4+x2+1
size = len(data)
for i in range(size-1, -1, -1):
crc ^= data[i]
for j in range(8):
if ((crc & 0x80) != 0):
crc = ((crc << 1) ^ poly) & 0xFF
else:
crc <<= 1
return crc
def create_gas_command(packer, gas_amount, idx):
# Common gas pedal msg generator
enable = gas_amount > 0.001
values = {
"ENABLE": enable,
"COUNTER_PEDAL": idx & 0xF,
}
if enable:
values["GAS_COMMAND"] = gas_amount * 255.
values["GAS_COMMAND2"] = gas_amount * 255.
dat = packer.make_can_msg("GAS_COMMAND", 0, values)[2]
checksum = crc8_pedal(dat[:-1])
values["CHECKSUM_PEDAL"] = checksum
return packer.make_can_msg("GAS_COMMAND", 0, values)
def is_ecu_disconnected(fingerprint, fingerprint_list, ecu_fingerprint, car, ecu):
# check if a stock ecu is disconnected by looking for specific CAN msgs in the fingerprint
# return True if the reference car fingerprint contains the ecu fingerprint msg and
# fingerprint does not contains messages normally sent by a given ecu
ecu_in_car = False
for car_finger in fingerprint_list[car]:
if any(msg in car_finger for msg in ecu_fingerprint[ecu]):
ecu_in_car = True
return ecu_in_car and not any(msg in fingerprint for msg in ecu_fingerprint[ecu])
def make_can_msg(addr, dat, bus):
return [addr, 0, dat, bus]