You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
4.9 KiB
197 lines
4.9 KiB
5 years ago
|
#!/usr/bin/env python3
|
||
|
import numpy as np
|
||
|
from numpy.linalg import solve
|
||
|
|
||
|
"""
|
||
|
Dynamic bycicle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani"
|
||
|
|
||
|
The state is x = [v, r]^T
|
||
|
with v lateral speed [m/s], and r rotational speed [rad/s]
|
||
|
|
||
|
The input u is the steering angle [rad]
|
||
|
|
||
|
The system is defined by
|
||
|
x_dot = A*x + B*u
|
||
|
|
||
|
A depends on longitudinal speed, u [m/s], and vehicle parameters CP
|
||
|
"""
|
||
|
|
||
|
|
||
|
def create_dyn_state_matrices(u, VM):
|
||
|
"""Returns the A and B matrix for the dynamics system
|
||
|
|
||
|
Args:
|
||
|
u: Vehicle speed [m/s]
|
||
|
VM: Vehicle model
|
||
|
|
||
|
Returns:
|
||
|
A tuple with the 2x2 A matrix, and 2x1 B matrix
|
||
|
|
||
|
Parameters in the vehicle model:
|
||
|
cF: Tire stiffnes Front [N/rad]
|
||
|
cR: Tire stiffnes Front [N/rad]
|
||
|
aF: Distance from CG to front wheels [m]
|
||
|
aR: Distance from CG to rear wheels [m]
|
||
|
m: Mass [kg]
|
||
|
j: Rotational inertia [kg m^2]
|
||
|
sR: Steering ratio [-]
|
||
|
chi: Steer ratio rear [-]
|
||
|
"""
|
||
|
A = np.zeros((2, 2))
|
||
|
B = np.zeros((2, 1))
|
||
|
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
|
||
|
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
|
||
|
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
|
||
|
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
|
||
|
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
|
||
|
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
|
||
|
return A, B
|
||
|
|
||
|
|
||
|
def kin_ss_sol(sa, u, VM):
|
||
|
"""Calculate the steady state solution at low speeds
|
||
|
At low speeds the tire slip is undefined, so a kinematic
|
||
|
model is used.
|
||
|
|
||
|
Args:
|
||
|
sa: Steering angle [rad]
|
||
|
u: Speed [m/s]
|
||
|
VM: Vehicle model
|
||
|
|
||
|
Returns:
|
||
|
2x1 matrix with steady state solution
|
||
|
"""
|
||
|
K = np.zeros((2, 1))
|
||
|
K[0, 0] = VM.aR / VM.sR / VM.l * u
|
||
|
K[1, 0] = 1. / VM.sR / VM.l * u
|
||
|
return K * sa
|
||
|
|
||
|
|
||
|
def dyn_ss_sol(sa, u, VM):
|
||
|
"""Calculate the steady state solution when x_dot = 0,
|
||
|
Ax + Bu = 0 => x = A^{-1} B u
|
||
|
|
||
|
Args:
|
||
|
sa: Steering angle [rad]
|
||
|
u: Speed [m/s]
|
||
|
VM: Vehicle model
|
||
|
|
||
|
Returns:
|
||
|
2x1 matrix with steady state solution
|
||
|
"""
|
||
|
A, B = create_dyn_state_matrices(u, VM)
|
||
|
return -solve(A, B) * sa
|
||
|
|
||
|
|
||
|
def calc_slip_factor(VM):
|
||
|
"""The slip factor is a measure of how the curvature changes with speed
|
||
|
it's positive for Oversteering vehicle, negative (usual case) otherwise.
|
||
|
"""
|
||
|
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
|
||
|
|
||
|
|
||
|
class VehicleModel():
|
||
|
def __init__(self, CP):
|
||
|
"""
|
||
|
Args:
|
||
|
CP: Car Parameters
|
||
|
"""
|
||
|
# for math readability, convert long names car params into short names
|
||
|
self.m = CP.mass
|
||
|
self.j = CP.rotationalInertia
|
||
|
self.l = CP.wheelbase
|
||
|
self.aF = CP.centerToFront
|
||
|
self.aR = CP.wheelbase - CP.centerToFront
|
||
|
self.chi = CP.steerRatioRear
|
||
|
|
||
|
self.cF_orig = CP.tireStiffnessFront
|
||
|
self.cR_orig = CP.tireStiffnessRear
|
||
|
self.update_params(1.0, CP.steerRatio)
|
||
|
|
||
|
def update_params(self, stiffness_factor, steer_ratio):
|
||
|
"""Update the vehicle model with a new stiffness factor and steer ratio"""
|
||
|
self.cF = stiffness_factor * self.cF_orig
|
||
|
self.cR = stiffness_factor * self.cR_orig
|
||
|
self.sR = steer_ratio
|
||
|
|
||
|
def steady_state_sol(self, sa, u):
|
||
|
"""Returns the steady state solution.
|
||
|
|
||
|
If the speed is too small we can't use the dynamic model (tire slip is undefined),
|
||
|
we then have to use the kinematic model
|
||
|
|
||
|
Args:
|
||
|
sa: Steering wheel angle [rad]
|
||
|
u: Speed [m/s]
|
||
|
|
||
|
Returns:
|
||
|
2x1 matrix with steady state solution (lateral speed, rotational speed)
|
||
|
"""
|
||
|
if u > 0.1:
|
||
|
return dyn_ss_sol(sa, u, self)
|
||
|
else:
|
||
|
return kin_ss_sol(sa, u, self)
|
||
|
|
||
|
def calc_curvature(self, sa, u):
|
||
|
"""Returns the curvature. Multiplied by the speed this will give the yaw rate.
|
||
|
|
||
|
Args:
|
||
|
sa: Steering wheel angle [rad]
|
||
|
u: Speed [m/s]
|
||
|
|
||
|
Returns:
|
||
|
Curvature factor [1/m]
|
||
|
"""
|
||
|
return self.curvature_factor(u) * sa / self.sR
|
||
|
|
||
|
def curvature_factor(self, u):
|
||
|
"""Returns the curvature factor.
|
||
|
Multiplied by wheel angle (not steering wheel angle) this will give the curvature.
|
||
|
|
||
|
Args:
|
||
|
u: Speed [m/s]
|
||
|
|
||
|
Returns:
|
||
|
Curvature factor [1/m]
|
||
|
"""
|
||
|
sf = calc_slip_factor(self)
|
||
|
return (1. - self.chi) / (1. - sf * u**2) / self.l
|
||
|
|
||
|
def get_steer_from_curvature(self, curv, u):
|
||
|
"""Calculates the required steering wheel angle for a given curvature
|
||
|
|
||
|
Args:
|
||
|
curv: Desired curvature [1/m]
|
||
|
u: Speed [m/s]
|
||
|
|
||
|
Returns:
|
||
|
Steering wheel angle [rad]
|
||
|
"""
|
||
|
|
||
|
return curv * self.sR * 1.0 / self.curvature_factor(u)
|
||
|
|
||
|
def get_steer_from_yaw_rate(self, yaw_rate, u):
|
||
|
"""Calculates the required steering wheel angle for a given yaw_rate
|
||
|
|
||
|
Args:
|
||
|
yaw_rate: Desired yaw rate [rad/s]
|
||
|
u: Speed [m/s]
|
||
|
|
||
|
Returns:
|
||
|
Steering wheel angle [rad]
|
||
|
"""
|
||
|
curv = yaw_rate / u
|
||
|
return self.get_steer_from_curvature(curv, u)
|
||
|
|
||
|
def yaw_rate(self, sa, u):
|
||
|
"""Calculate yaw rate
|
||
|
|
||
|
Args:
|
||
|
sa: Steering wheel angle [rad]
|
||
|
u: Speed [m/s]
|
||
|
|
||
|
Returns:
|
||
|
Yaw rate [rad/s]
|
||
|
"""
|
||
|
return self.calc_curvature(sa, u) * u
|