openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

114 lines
3.6 KiB

"""
Coordinate transformation module. All methods accept arrays as input
with each row as a position.
"""
import numpy as np
a = 6378137
b = 6356752.3142
esq = 6.69437999014 * 0.001
e1sq = 6.73949674228 * 0.001
def geodetic2ecef(geodetic, radians=False):
geodetic = np.array(geodetic)
input_shape = geodetic.shape
geodetic = np.atleast_2d(geodetic)
ratio = 1.0 if radians else (np.pi / 180.0)
lat = ratio*geodetic[:, 0]
lon = ratio*geodetic[:, 1]
alt = geodetic[:, 2]
xi = np.sqrt(1 - esq * np.sin(lat)**2)
x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
y = (a / xi + alt) * np.cos(lat) * np.sin(lon)
z = (a / xi * (1 - esq) + alt) * np.sin(lat)
ecef = np.array([x, y, z]).T
return ecef.reshape(input_shape)
def ecef2geodetic(ecef, radians=False):
"""
Convert ECEF coordinates to geodetic using ferrari's method
"""
# Save shape and export column
ecef = np.atleast_1d(ecef)
input_shape = ecef.shape
ecef = np.atleast_2d(ecef)
x, y, z = ecef[:, 0], ecef[:, 1], ecef[:, 2]
ratio = 1.0 if radians else (180.0 / np.pi)
# Conver from ECEF to geodetic using Ferrari's methods
# https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution
r = np.sqrt(x * x + y * y)
Esq = a * a - b * b
F = 54 * b * b * z * z
G = r * r + (1 - esq) * z * z - esq * Esq
C = (esq * esq * F * r * r) / (pow(G, 3))
S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C))
P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
Q = np.sqrt(1 + 2 * esq * esq * P)
r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) -
P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
U = np.sqrt(pow((r - esq * r_0), 2) + z * z)
V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
Z_0 = b * b * z / (a * V)
h = U * (1 - b * b / (a * V))
lat = ratio*np.arctan((z + e1sq * Z_0) / r)
lon = ratio*np.arctan2(y, x)
# stack the new columns and return to the original shape
geodetic = np.column_stack((lat, lon, h))
return geodetic.reshape(input_shape)
geodetic_from_ecef = ecef2geodetic
ecef_from_geodetic = geodetic2ecef
class LocalCoord():
"""
Allows conversions to local frames. In this case NED.
That is: North East Down from the start position in
meters.
"""
def __init__(self, init_geodetic, init_ecef):
self.init_ecef = init_ecef
lat, lon, _ = (np.pi/180)*np.array(init_geodetic)
self.ned2ecef_matrix = np.array([[-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon)],
[-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)],
[np.cos(lat), 0, -np.sin(lat)]])
self.ecef2ned_matrix = self.ned2ecef_matrix.T
self.ecef_from_ned_matrix = self.ned2ecef_matrix
self.ned_from_ecef_matrix = self.ecef2ned_matrix
@classmethod
def from_geodetic(cls, init_geodetic):
init_ecef = geodetic2ecef(init_geodetic)
return LocalCoord(init_geodetic, init_ecef)
@classmethod
def from_ecef(cls, init_ecef):
init_geodetic = ecef2geodetic(init_ecef)
return LocalCoord(init_geodetic, init_ecef)
def ecef2ned(self, ecef):
ecef = np.array(ecef)
return np.dot(self.ecef2ned_matrix, (ecef - self.init_ecef).T).T
def ned2ecef(self, ned):
ned = np.array(ned)
# Transpose so that init_ecef will broadcast correctly for 1d or 2d ned.
return (np.dot(self.ned2ecef_matrix, ned.T).T + self.init_ecef)
def geodetic2ned(self, geodetic):
ecef = geodetic2ecef(geodetic)
return self.ecef2ned(ecef)
def ned2geodetic(self, ned):
ecef = self.ned2ecef(ned)
return ecef2geodetic(ecef)