openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

97 lines
3.3 KiB

#!/usr/bin/env python3
# You might need to uninstall the PyQt5 pip package to avoid conflicts
import os
import time
import numpy as np
import polyline
from cffi import FFI
from common.ffi_wrapper import suffix
from common.basedir import BASEDIR
HEIGHT = WIDTH = SIZE = 512
METERS_PER_PIXEL = 2
def get_ffi():
lib = os.path.join(BASEDIR, "selfdrive", "navd", "libmaprender" + suffix())
ffi = FFI()
ffi.cdef("""
void* map_renderer_init(char *maps_host, char *token);
void map_renderer_update_position(void *inst, float lat, float lon, float bearing);
void map_renderer_update_route(void *inst, char *polyline);
void map_renderer_update(void *inst);
void map_renderer_process(void *inst);
bool map_renderer_loaded(void *inst);
uint8_t* map_renderer_get_image(void *inst);
void map_renderer_free_image(void *inst, uint8_t *buf);
""")
return ffi, ffi.dlopen(lib)
def wait_ready(lib, renderer):
while not lib.map_renderer_loaded(renderer):
lib.map_renderer_update(renderer)
# The main qt app is not execed, so we need to periodically process events for e.g. network requests
lib.map_renderer_process(renderer)
time.sleep(0.01)
def get_image(lib, renderer):
buf = lib.map_renderer_get_image(renderer)
r = list(buf[0:WIDTH * HEIGHT])
lib.map_renderer_free_image(renderer, buf)
# Convert to numpy
r = np.asarray(r)
return r.reshape((WIDTH, HEIGHT))
def navRoute_to_polyline(nr):
coords = [(m.latitude, m.longitude) for m in nr.navRoute.coordinates]
return coords_to_polyline(coords)
def coords_to_polyline(coords):
# TODO: where does this factor of 10 come from?
return polyline.encode([(lat * 10., lon * 10.) for lat, lon in coords])
def polyline_to_coords(p):
coords = polyline.decode(p)
return [(lat / 10., lon / 10.) for lat, lon in coords]
if __name__ == "__main__":
import matplotlib.pyplot as plt
ffi, lib = get_ffi()
renderer = lib.map_renderer_init(ffi.NULL, ffi.NULL)
wait_ready(lib, renderer)
geometry = r"{yxk}@|obn~Eg@@eCFqc@J{RFw@?kA@gA?q|@Riu@NuJBgi@ZqVNcRBaPBkG@iSD{I@_H@cH?gG@mG@gG?aD@{LDgDDkVVyQLiGDgX@q_@@qI@qKhS{R~[}NtYaDbGoIvLwNfP_b@|f@oFnF_JxHel@bf@{JlIuxAlpAkNnLmZrWqFhFoh@jd@kX|TkJxH_RnPy^|[uKtHoZ~Um`DlkCorC``CuShQogCtwB_ThQcr@fk@sVrWgRhVmSb\\oj@jxA{Qvg@u]tbAyHzSos@xjBeKbWszAbgEc~@~jCuTrl@cYfo@mRn\\_m@v}@ij@jp@om@lk@y|A`pAiXbVmWzUod@xj@wNlTw}@|uAwSn\\kRfYqOdS_IdJuK`KmKvJoOhLuLbHaMzGwO~GoOzFiSrEsOhD}PhCqw@vJmnAxSczA`Vyb@bHk[fFgl@pJeoDdl@}}@zIyr@hG}X`BmUdBcM^aRR}Oe@iZc@mR_@{FScHxAn_@vz@zCzH~GjPxAhDlB~DhEdJlIbMhFfG|F~GlHrGjNjItLnGvQ~EhLnBfOn@p`@AzAAvn@CfC?fc@`@lUrArStCfSxEtSzGxM|ElFlBrOzJlEbDnC~BfDtCnHjHlLvMdTnZzHpObOf^pKla@~G|a@dErg@rCbj@zArYlj@ttJ~AfZh@r]LzYg@`TkDbj@gIdv@oE|i@kKzhA{CdNsEfOiGlPsEvMiDpLgBpHyB`MkB|MmArPg@|N?|P^rUvFz~AWpOCdAkB|PuB`KeFfHkCfGy@tAqC~AsBPkDs@uAiAcJwMe@s@eKkPMoXQux@EuuCoH?eI?Kas@}Dy@wAUkMOgDL"
lib.map_renderer_update_route(renderer, geometry.encode())
POSITIONS = [
(32.71569271952601, -117.16384270868463, 0), (32.71569271952601, -117.16384270868463, 45), # San Diego
(52.378641991483136, 4.902623379456488, 0), (52.378641991483136, 4.902623379456488, 45), # Amsterdam
]
plt.figure()
for i, pos in enumerate(POSITIONS):
t = time.time()
lib.map_renderer_update_position(renderer, *pos)
wait_ready(lib, renderer)
print(f"{pos} took {time.time() - t:.2f} s")
plt.subplot(2, 2, i + 1)
plt.imshow(get_image(lib, renderer), cmap='gray')
plt.show()