openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

110 lines
3.6 KiB

# Kernel Creation
Tinygrad lazily builds up a graph of Tensor operations. The Tensor graph includes a mix of:
- Buffer and Assignment Ops: `BUFFER`, `BUFFER_VIEW`, `COPY`, `ASSIGN`
- Movement Ops: `RESHAPE`, `EXPAND`, `PERMUTE`, `PAD`, `SHRINK`, `FLIP`
- Compute Ops: `ADD`, `MUL`, `REDUCE_AXIS`, ...
`Tensor.kernelize` creates the kernels and buffers needed to realize the output Tensor(s).
## Kernelize flow
Let's see how a multiply add Tensor graph becomes a fused elementwise kernel.
```py
# initialize 3 input buffers on the device
a = Tensor([1]).realize()
b = Tensor([2]).realize()
c = Tensor([3]).realize()
# create the Tensor graph
mul = a*b
out = mul+c
print(mul) # <Tensor <UOp METAL (1,) int (<Ops.MUL: 48>, None)> on METAL with grad None>
print(out) # <Tensor <UOp METAL (1,) int (<Ops.ADD: 52>, None)> on METAL with grad None>
out.kernelize()
print(mul) # <Tensor <UOp METAL (1,) int (<Ops.MUL: 48>, None)> on METAL with grad None>
print(out) # <Tensor <UOp METAL (1,) int (<Ops.ASSIGN: 66>, None)> on METAL with grad None>
```
The multiply Tensor stays the same because it is fused. The output Tensor's UOp becomes a new ASSIGN UOp:
```py
print(out.lazydata)
```
The first source is the output BUFFER:
```
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
UOp(Ops.DEVICE, dtypes.void, arg='METAL', src=()),
UOp(Ops.UNIQUE, dtypes.void, arg=6, src=()),))
```
And the second source is the KERNEL and its 4 buffer edges (output_buffer, a, b, c):
```
UOp(Ops.KERNEL, dtypes.void, arg=<Kernel 12 SINK(<Ops.STORE: 45>,) (__add__, __mul__)>, src=(
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
x1:=UOp(Ops.DEVICE, dtypes.void, arg='METAL', src=()),
UOp(Ops.UNIQUE, dtypes.void, arg=6, src=()),)),
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
x1,
UOp(Ops.UNIQUE, dtypes.void, arg=1, src=()),)),
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
x1,
UOp(Ops.UNIQUE, dtypes.void, arg=3, src=()),)),
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
x1,
UOp(Ops.UNIQUE, dtypes.void, arg=5, src=()),)),))
```
KERNEL describes the compute AST, metadata and memory dependencies.
BUFFER holds a reference to the device memory where the output will be stored.
Once a Tensor is kernelized, all children will LOAD its BUFFER, instead of fusing it:
```py
child = out+2
child.kernelize()
print(child.lazydata.src[1].arg.ast)
```
```
UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.DEFINE_GLOBAL, dtypes.int.ptr(1), arg=0, src=()),
x2:=UOp(Ops.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(1,), strides=(0,), offset=0, mask=None, contiguous=True),)), src=()),
UOp(Ops.ADD, dtypes.int, arg=None, src=(
UOp(Ops.LOAD, dtypes.int, arg=None, src=(
UOp(Ops.DEFINE_GLOBAL, dtypes.int.ptr(1), arg=1, src=()),
x2,)),
UOp(Ops.CONST, dtypes.int, arg=2, src=(
x2,)),)),)),))
```
`Tensor.realize` will execute the kernels and write outputs to memory:
```py
Tensor.realize(out)
print(out) # <Tensor <UOp METAL (1,) int (<Ops.BUFFER: 23>, <buf real:True device:METAL size:1 dtype:dtypes.int offset:0>)> on METAL with grad None>
print(out.item()) # 5
```
<hr />
**Summary**
- The large Tensor graph is built from a mix of data, compute and movement Ops.
- `Tensor.kernelize` splits the Tensor graph into data (BUFFER), compute (KERNEL) and links dependencies with ASSIGN.
- `Tensor.realize` executes KERNELs on device and replaces the Tensor graph with just a BUFFER.
- Kernelize can be called multiple times on a Tensor. This allows for incrementally building the kernel fusion layout of a large Tensor graph, without having to call `realize` or `schedule`.