openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

116 lines
3.8 KiB

import numpy as np
from typing import Dict
from openpilot.selfdrive.modeld.constants import IDX_N
POSE_WIDTH = 6
SIM_POSE_WIDTH = 6
LEAD_WIDTH = 4
LANE_LINES_WIDTH = 2
ROAD_EDGES_WIDTH = 2
PLAN_WIDTH = 15
2 years ago
DESIRE_PRED_WIDTH = 8
NUM_LANE_LINES = 4
NUM_ROAD_EDGES = 2
LEAD_TRAJ_LEN = 6
PLAN_MHP_N = 5
LEAD_MHP_N = 2
PLAN_MHP_SELECTION = 1
LEAD_MHP_SELECTION = 3
FCW_THRESHOLD_5MS2_HIGH = 0.15
FCW_THRESHOLD_5MS2_LOW = 0.05
FCW_THRESHOLD_3MS2 = 0.7
def sigmoid(x):
return 1. / (1. + np.exp(-x))
def softmax(x, axis=-1):
x -= np.max(x, axis=axis, keepdims=True)
if x.dtype == np.float32 or x.dtype == np.float64:
np.exp(x, out=x)
else:
x = np.exp(x)
x /= np.sum(x, axis=axis, keepdims=True)
return x
def parse_mdn(name, outs, in_N=0, out_N=1, out_shape=None):
if name not in outs:
return
raw = outs[name]
raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
pred_mu = raw[:,:,:(raw.shape[2] - out_N)//2]
n_values = (raw.shape[2] - out_N)//2
pred_mu = raw[:,:,:n_values]
pred_std = np.exp(raw[:,:,n_values: 2*n_values])
if in_N > 1:
weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
for i in range(out_N):
weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
if out_N == 1:
for fidx in range(weights.shape[0]):
idxs = np.argsort(weights[fidx][:,0])[::-1]
weights[fidx] = weights[fidx][idxs]
pred_mu[fidx] = pred_mu[fidx][idxs]
pred_std[fidx] = pred_std[fidx][idxs]
full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
outs[name + '_weights'] = weights
outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
for fidx in range(weights.shape[0]):
for hidx in range(out_N):
idxs = np.argsort(weights[fidx,:,hidx])[::-1]
pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
else:
pred_mu_final = pred_mu
pred_std_final = pred_std
if out_N > 1:
final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
else:
final_shape = tuple([raw.shape[0],] + list(out_shape))
outs[name] = pred_mu_final.reshape(final_shape)
outs[name + '_stds'] = pred_std_final.reshape(final_shape)
return
def parse_binary_crossentropy(name, outs):
if name not in outs:
return
raw = outs[name]
outs[name] = sigmoid(raw)
return
def parse_categorical_crossentropy(name, outs, size=1):
if name not in outs:
return
raw = outs[name]
if size > 1:
raw = raw.reshape((raw.shape[0], size, -1))
outs[name] = softmax(raw, axis=-1)
return
def parse_outputs(outs: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
parse_mdn('plan', outs, in_N=PLAN_MHP_N, out_N=PLAN_MHP_SELECTION, out_shape=(IDX_N,PLAN_WIDTH))
parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(NUM_LANE_LINES,IDX_N,LANE_LINES_WIDTH))
parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(NUM_ROAD_EDGES,IDX_N,LANE_LINES_WIDTH))
parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(POSE_WIDTH,))
parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(POSE_WIDTH,))
parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(POSE_WIDTH,))
parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(POSE_WIDTH // 2,))
parse_mdn('lead', outs, in_N=LEAD_MHP_N, out_N=LEAD_MHP_SELECTION, out_shape=(LEAD_TRAJ_LEN,LEAD_WIDTH))
for k in ['lead_prob', 'lane_lines_prob', 'meta']:
parse_binary_crossentropy(k, outs)
2 years ago
for k in ['desire_pred', 'desire_state']:
parse_categorical_crossentropy(k, outs, size=DESIRE_PRED_WIDTH)
parse_categorical_crossentropy(k, outs, size=DESIRE_PRED_WIDTH)
return outs