openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

531 lines
20 KiB

import json
import os
import numpy as np
import tomllib
from abc import abstractmethod, ABC
from enum import StrEnum
from typing import Any, NamedTuple
from collections.abc import Callable
from cereal import car
from openpilot.common.basedir import BASEDIR
from openpilot.common.conversions import Conversions as CV
from openpilot.common.simple_kalman import KF1D, get_kalman_gain
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.car import apply_hysteresis, gen_empty_fingerprint, scale_rot_inertia, scale_tire_stiffness, STD_CARGO_KG
from openpilot.selfdrive.car.values import Platform
from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, get_friction
from openpilot.selfdrive.controls.lib.events import Events
from openpilot.selfdrive.controls.lib.vehicle_model import VehicleModel
ButtonType = car.CarState.ButtonEvent.Type
GearShifter = car.CarState.GearShifter
EventName = car.CarEvent.EventName
MAX_CTRL_SPEED = (V_CRUISE_MAX + 4) * CV.KPH_TO_MS
ACCEL_MAX = 2.0
ACCEL_MIN = -3.5
FRICTION_THRESHOLD = 0.3
TORQUE_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/params.toml')
TORQUE_OVERRIDE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/override.toml')
TORQUE_SUBSTITUTE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/substitute.toml')
class LatControlInputs(NamedTuple):
lateral_acceleration: float
roll_compensation: float
vego: float
aego: float
TorqueFromLateralAccelCallbackType = Callable[[LatControlInputs, car.CarParams.LateralTorqueTuning, float, float, bool, bool], float]
def get_torque_params(candidate):
with open(TORQUE_SUBSTITUTE_PATH, 'rb') as f:
sub = tomllib.load(f)
if candidate in sub:
candidate = sub[candidate]
with open(TORQUE_PARAMS_PATH, 'rb') as f:
params = tomllib.load(f)
with open(TORQUE_OVERRIDE_PATH, 'rb') as f:
override = tomllib.load(f)
# Ensure no overlap
if sum([candidate in x for x in [sub, params, override]]) > 1:
raise RuntimeError(f'{candidate} is defined twice in torque config')
if candidate in override:
out = override[candidate]
elif candidate in params:
out = params[candidate]
else:
raise NotImplementedError(f"Did not find torque params for {candidate}")
return {key: out[i] for i, key in enumerate(params['legend'])}
# generic car and radar interfaces
class CarInterfaceBase(ABC):
def __init__(self, CP, CarController, CarState):
self.CP = CP
self.VM = VehicleModel(CP)
self.frame = 0
self.steering_unpressed = 0
self.low_speed_alert = False
self.no_steer_warning = False
self.silent_steer_warning = True
self.v_ego_cluster_seen = False
self.CS = None
self.can_parsers = []
if CarState is not None:
self.CS = CarState(CP)
self.cp = self.CS.get_can_parser(CP)
self.cp_cam = self.CS.get_cam_can_parser(CP)
self.cp_adas = self.CS.get_adas_can_parser(CP)
self.cp_body = self.CS.get_body_can_parser(CP)
self.cp_loopback = self.CS.get_loopback_can_parser(CP)
self.can_parsers = [self.cp, self.cp_cam, self.cp_adas, self.cp_body, self.cp_loopback]
self.CC = None
if CarController is not None:
self.CC = CarController(self.cp.dbc_name, CP, self.VM)
@staticmethod
def get_pid_accel_limits(CP, current_speed, cruise_speed):
return ACCEL_MIN, ACCEL_MAX
@classmethod
def get_non_essential_params(cls, candidate: Platform):
"""
Parameters essential to controlling the car may be incomplete or wrong without FW versions or fingerprints.
"""
return cls.get_params(candidate, gen_empty_fingerprint(), list(), False, False)
@classmethod
def get_params(cls, candidate: Platform, fingerprint: dict[int, dict[int, int]], car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool):
ret = CarInterfaceBase.get_std_params(candidate)
if hasattr(candidate, "config"):
if candidate.config.specs is not None:
ret.mass = candidate.config.specs.mass
ret.wheelbase = candidate.config.specs.wheelbase
ret.steerRatio = candidate.config.specs.steerRatio
ret.centerToFront = ret.wheelbase * candidate.config.specs.centerToFrontRatio
ret.minEnableSpeed = candidate.config.specs.minEnableSpeed
ret.minSteerSpeed = candidate.config.specs.minSteerSpeed
ret.flags |= int(candidate.config.flags)
ret = cls._get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs)
# Vehicle mass is published curb weight plus assumed payload such as a human driver; notCars have no assumed payload
if not ret.notCar:
ret.mass = ret.mass + STD_CARGO_KG
# Set params dependent on values set by the car interface
ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase)
ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, ret.tireStiffnessFactor)
return ret
@staticmethod
@abstractmethod
def _get_params(ret: car.CarParams, candidate, fingerprint: dict[int, dict[int, int]],
car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool):
raise NotImplementedError
@staticmethod
def init(CP, logcan, sendcan):
pass
@staticmethod
def get_steer_feedforward_default(desired_angle, v_ego):
# Proportional to realigning tire momentum: lateral acceleration.
return desired_angle * (v_ego**2)
def get_steer_feedforward_function(self):
return self.get_steer_feedforward_default
def torque_from_lateral_accel_linear(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning,
lateral_accel_error: float, lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
# The default is a linear relationship between torque and lateral acceleration (accounting for road roll and steering friction)
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
return (latcontrol_inputs.lateral_acceleration / float(torque_params.latAccelFactor)) + friction
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
return self.torque_from_lateral_accel_linear
# returns a set of default params to avoid repetition in car specific params
@staticmethod
def get_std_params(candidate):
ret = car.CarParams.new_message()
ret.carFingerprint = candidate
# Car docs fields
ret.maxLateralAccel = get_torque_params(candidate)['MAX_LAT_ACCEL_MEASURED']
ret.autoResumeSng = True # describes whether car can resume from a stop automatically
# standard ALC params
ret.tireStiffnessFactor = 1.0
ret.steerControlType = car.CarParams.SteerControlType.torque
ret.minSteerSpeed = 0.
ret.wheelSpeedFactor = 1.0
ret.pcmCruise = True # openpilot's state is tied to the PCM's cruise state on most cars
ret.minEnableSpeed = -1. # enable is done by stock ACC, so ignore this
ret.steerRatioRear = 0. # no rear steering, at least on the listed cars aboveA
ret.openpilotLongitudinalControl = False
ret.stopAccel = -2.0
ret.stoppingDecelRate = 0.8 # brake_travel/s while trying to stop
ret.vEgoStopping = 0.5
ret.vEgoStarting = 0.5
ret.stoppingControl = True
ret.longitudinalTuning.deadzoneBP = [0.]
ret.longitudinalTuning.deadzoneV = [0.]
ret.longitudinalTuning.kf = 1.
ret.longitudinalTuning.kpBP = [0.]
ret.longitudinalTuning.kpV = [1.]
ret.longitudinalTuning.kiBP = [0.]
ret.longitudinalTuning.kiV = [1.]
# TODO estimate car specific lag, use .15s for now
ret.longitudinalActuatorDelayLowerBound = 0.15
ret.longitudinalActuatorDelayUpperBound = 0.15
ret.steerLimitTimer = 1.0
return ret
@staticmethod
def configure_torque_tune(candidate, tune, steering_angle_deadzone_deg=0.0, use_steering_angle=True):
params = get_torque_params(candidate)
tune.init('torque')
tune.torque.useSteeringAngle = use_steering_angle
tune.torque.kp = 1.0
tune.torque.kf = 1.0
tune.torque.ki = 0.1
tune.torque.friction = params['FRICTION']
tune.torque.latAccelFactor = params['LAT_ACCEL_FACTOR']
tune.torque.latAccelOffset = 0.0
Live torque (#25456) * wip torqued * add basic logic * setup in manager * check sanity and publish msg * add first order filter to outputs * wire up controlsd, and update gains * rename intercept to offset * add cloudlog, live values are not updated * fix bugs, do not reset points for now * fix crashes * rename to main * fix bugs, works offline * fix float in cereal bug * add latacc filter * randomly choose points, approx for iid * add variable decay * local param to capnp instead of dict * verify works in replay * use torqued output in controlsd * use in controlsd; use points from past routes * controlsd bugfix * filter before updating gains, needs to be replaced * save all points to ensure smooth transition across routes, revert friction factor to 1.5 * add filters to prevent noisy low-speed data points; improve fit sanity * add engaged buffer * revert lat_acc thresh * use paramsd realtime process config * make latacc-to-torque generic, and overrideable * move freq to 4Hz, avoid storing in np.array, don't publish points in the message * float instead of np * remove constant while storing pts * rename slope, offset to lat_accet_factor, offset * resolve issues * use camelcase in all capnp params * use camelcase everywhere * reduce latacc threshold or sanity, add car_sane todo, save points properly * add and check tag * write param to disk at end of route * remove args * rebase op, cereal * save on exit * restore default handler * cpu usage check * add to process replay * handle reset better, reduce unnecessary computation * always publish raw values - useful for debug * regen routes * update refs * checks on cache restore * check tuning vals too * clean that up * reduce cpu usage * reduce cpu usage by 75% * cleanup * optimize further * handle reset condition better, don't put points in init, use only in corolla * bump cereal after rebasing * update refs * Update common/params.cc Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com> * remove unnecessary checks * Update RELEASES.md Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com> old-commit-hash: 4fa62f146426f76c9c1c2867d9729b33ec612b59
3 years ago
tune.torque.steeringAngleDeadzoneDeg = steering_angle_deadzone_deg
@abstractmethod
def _update(self, c: car.CarControl) -> car.CarState:
pass
def update(self, c: car.CarControl, can_strings: list[bytes]) -> car.CarState:
# parse can
for cp in self.can_parsers:
if cp is not None:
cp.update_strings(can_strings)
# get CarState
ret = self._update(c)
ret.canValid = all(cp.can_valid for cp in self.can_parsers if cp is not None)
ret.canTimeout = any(cp.bus_timeout for cp in self.can_parsers if cp is not None)
if ret.vEgoCluster == 0.0 and not self.v_ego_cluster_seen:
ret.vEgoCluster = ret.vEgo
else:
self.v_ego_cluster_seen = True
# Many cars apply hysteresis to the ego dash speed
if self.CS is not None:
ret.vEgoCluster = apply_hysteresis(ret.vEgoCluster, self.CS.out.vEgoCluster, self.CS.cluster_speed_hyst_gap)
if abs(ret.vEgo) < self.CS.cluster_min_speed:
ret.vEgoCluster = 0.0
if ret.cruiseState.speedCluster == 0:
ret.cruiseState.speedCluster = ret.cruiseState.speed
# copy back for next iteration
reader = ret.as_reader()
if self.CS is not None:
self.CS.out = reader
return reader
@abstractmethod
def apply(self, c: car.CarControl, now_nanos: int) -> tuple[car.CarControl.Actuators, list[bytes]]:
pass
def create_common_events(self, cs_out, extra_gears=None, pcm_enable=True, allow_enable=True,
enable_buttons=(ButtonType.accelCruise, ButtonType.decelCruise)):
events = Events()
if cs_out.doorOpen:
events.add(EventName.doorOpen)
if cs_out.seatbeltUnlatched:
events.add(EventName.seatbeltNotLatched)
if cs_out.gearShifter != GearShifter.drive and (extra_gears is None or
cs_out.gearShifter not in extra_gears):
events.add(EventName.wrongGear)
if cs_out.gearShifter == GearShifter.reverse:
events.add(EventName.reverseGear)
if not cs_out.cruiseState.available:
events.add(EventName.wrongCarMode)
if cs_out.espDisabled:
events.add(EventName.espDisabled)
if cs_out.stockFcw:
events.add(EventName.stockFcw)
if cs_out.stockAeb:
events.add(EventName.stockAeb)
if cs_out.vEgo > MAX_CTRL_SPEED:
events.add(EventName.speedTooHigh)
if cs_out.cruiseState.nonAdaptive:
events.add(EventName.wrongCruiseMode)
if cs_out.brakeHoldActive and self.CP.openpilotLongitudinalControl:
events.add(EventName.brakeHold)
if cs_out.parkingBrake:
events.add(EventName.parkBrake)
if cs_out.accFaulted:
events.add(EventName.accFaulted)
if cs_out.steeringPressed:
events.add(EventName.steerOverride)
# Handle button presses
for b in cs_out.buttonEvents:
# Enable OP long on falling edge of enable buttons (defaults to accelCruise and decelCruise, overridable per-port)
if not self.CP.pcmCruise and (b.type in enable_buttons and not b.pressed):
events.add(EventName.buttonEnable)
# Disable on rising and falling edge of cancel for both stock and OP long
if b.type == ButtonType.cancel:
events.add(EventName.buttonCancel)
# Handle permanent and temporary steering faults
self.steering_unpressed = 0 if cs_out.steeringPressed else self.steering_unpressed + 1
if cs_out.steerFaultTemporary:
if cs_out.steeringPressed and (not self.CS.out.steerFaultTemporary or self.no_steer_warning):
self.no_steer_warning = True
else:
self.no_steer_warning = False
# if the user overrode recently, show a less harsh alert
if self.silent_steer_warning or cs_out.standstill or self.steering_unpressed < int(1.5 / DT_CTRL):
self.silent_steer_warning = True
events.add(EventName.steerTempUnavailableSilent)
else:
events.add(EventName.steerTempUnavailable)
else:
self.no_steer_warning = False
self.silent_steer_warning = False
if cs_out.steerFaultPermanent:
events.add(EventName.steerUnavailable)
# we engage when pcm is active (rising edge)
# enabling can optionally be blocked by the car interface
if pcm_enable:
if cs_out.cruiseState.enabled and not self.CS.out.cruiseState.enabled and allow_enable:
events.add(EventName.pcmEnable)
elif not cs_out.cruiseState.enabled:
events.add(EventName.pcmDisable)
return events
class RadarInterfaceBase(ABC):
def __init__(self, CP):
self.rcp = None
self.pts = {}
self.delay = 0
self.radar_ts = CP.radarTimeStep
self.frame = 0
self.no_radar_sleep = 'NO_RADAR_SLEEP' in os.environ
def update(self, can_strings):
self.frame += 1
if (self.frame % int(100 * self.radar_ts)) == 0:
return car.RadarData.new_message()
return None
class CarStateBase(ABC):
def __init__(self, CP):
self.CP = CP
self.car_fingerprint = CP.carFingerprint
self.out = car.CarState.new_message()
self.cruise_buttons = 0
self.left_blinker_cnt = 0
self.right_blinker_cnt = 0
self.steering_pressed_cnt = 0
self.left_blinker_prev = False
self.right_blinker_prev = False
self.cluster_speed_hyst_gap = 0.0
self.cluster_min_speed = 0.0 # min speed before dropping to 0
Q = [[0.0, 0.0], [0.0, 100.0]]
R = 0.3
A = [[1.0, DT_CTRL], [0.0, 1.0]]
C = [[1.0, 0.0]]
x0=[[0.0], [0.0]]
K = get_kalman_gain(DT_CTRL, np.array(A), np.array(C), np.array(Q), R)
self.v_ego_kf = KF1D(x0=x0, A=A, C=C[0], K=K)
def update_speed_kf(self, v_ego_raw):
if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0: # Prevent large accelerations when car starts at non zero speed
self.v_ego_kf.set_x([[v_ego_raw], [0.0]])
v_ego_x = self.v_ego_kf.update(v_ego_raw)
return float(v_ego_x[0]), float(v_ego_x[1])
def get_wheel_speeds(self, fl, fr, rl, rr, unit=CV.KPH_TO_MS):
factor = unit * self.CP.wheelSpeedFactor
wheelSpeeds = car.CarState.WheelSpeeds.new_message()
wheelSpeeds.fl = fl * factor
wheelSpeeds.fr = fr * factor
wheelSpeeds.rl = rl * factor
wheelSpeeds.rr = rr * factor
return wheelSpeeds
def update_blinker_from_lamp(self, blinker_time: int, left_blinker_lamp: bool, right_blinker_lamp: bool):
"""Update blinkers from lights. Enable output when light was seen within the last `blinker_time`
iterations"""
# TODO: Handle case when switching direction. Now both blinkers can be on at the same time
self.left_blinker_cnt = blinker_time if left_blinker_lamp else max(self.left_blinker_cnt - 1, 0)
self.right_blinker_cnt = blinker_time if right_blinker_lamp else max(self.right_blinker_cnt - 1, 0)
return self.left_blinker_cnt > 0, self.right_blinker_cnt > 0
def update_steering_pressed(self, steering_pressed, steering_pressed_min_count):
"""Applies filtering on steering pressed for noisy driver torque signals."""
self.steering_pressed_cnt += 1 if steering_pressed else -1
self.steering_pressed_cnt = clip(self.steering_pressed_cnt, 0, steering_pressed_min_count * 2)
return self.steering_pressed_cnt > steering_pressed_min_count
def update_blinker_from_stalk(self, blinker_time: int, left_blinker_stalk: bool, right_blinker_stalk: bool):
"""Update blinkers from stalk position. When stalk is seen the blinker will be on for at least blinker_time,
or until the stalk is turned off, whichever is longer. If the opposite stalk direction is seen the blinker
is forced to the other side. On a rising edge of the stalk the timeout is reset."""
if left_blinker_stalk:
self.right_blinker_cnt = 0
if not self.left_blinker_prev:
self.left_blinker_cnt = blinker_time
if right_blinker_stalk:
self.left_blinker_cnt = 0
if not self.right_blinker_prev:
self.right_blinker_cnt = blinker_time
self.left_blinker_cnt = max(self.left_blinker_cnt - 1, 0)
self.right_blinker_cnt = max(self.right_blinker_cnt - 1, 0)
self.left_blinker_prev = left_blinker_stalk
self.right_blinker_prev = right_blinker_stalk
return bool(left_blinker_stalk or self.left_blinker_cnt > 0), bool(right_blinker_stalk or self.right_blinker_cnt > 0)
@staticmethod
def parse_gear_shifter(gear: str | None) -> car.CarState.GearShifter:
if gear is None:
return GearShifter.unknown
d: dict[str, car.CarState.GearShifter] = {
'P': GearShifter.park, 'PARK': GearShifter.park,
'R': GearShifter.reverse, 'REVERSE': GearShifter.reverse,
'N': GearShifter.neutral, 'NEUTRAL': GearShifter.neutral,
'E': GearShifter.eco, 'ECO': GearShifter.eco,
'T': GearShifter.manumatic, 'MANUAL': GearShifter.manumatic,
'D': GearShifter.drive, 'DRIVE': GearShifter.drive,
'S': GearShifter.sport, 'SPORT': GearShifter.sport,
'L': GearShifter.low, 'LOW': GearShifter.low,
'B': GearShifter.brake, 'BRAKE': GearShifter.brake,
}
return d.get(gear.upper(), GearShifter.unknown)
@staticmethod
def get_cam_can_parser(CP):
return None
@staticmethod
def get_adas_can_parser(CP):
return None
@staticmethod
def get_body_can_parser(CP):
return None
@staticmethod
def get_loopback_can_parser(CP):
return None
INTERFACE_ATTR_FILE = {
"FINGERPRINTS": "fingerprints",
"FW_VERSIONS": "fingerprints",
}
# interface-specific helpers
def get_interface_attr(attr: str, combine_brands: bool = False, ignore_none: bool = False) -> dict[str | StrEnum, Any]:
# read all the folders in selfdrive/car and return a dict where:
# - keys are all the car models or brand names
# - values are attr values from all car folders
result = {}
for car_folder in sorted([x[0] for x in os.walk(BASEDIR + '/selfdrive/car')]):
try:
brand_name = car_folder.split('/')[-1]
brand_values = __import__(f'openpilot.selfdrive.car.{brand_name}.{INTERFACE_ATTR_FILE.get(attr, "values")}', fromlist=[attr])
if hasattr(brand_values, attr) or not ignore_none:
attr_data = getattr(brand_values, attr, None)
else:
continue
if combine_brands:
if isinstance(attr_data, dict):
for f, v in attr_data.items():
result[f] = v
else:
result[brand_name] = attr_data
except (ImportError, OSError):
pass
return result
class NanoFFModel:
def __init__(self, weights_loc: str, platform: str):
self.weights_loc = weights_loc
self.platform = platform
self.load_weights(platform)
def load_weights(self, platform: str):
with open(self.weights_loc) as fob:
self.weights = {k: np.array(v) for k, v in json.load(fob)[platform].items()}
def relu(self, x: np.ndarray):
return np.maximum(0.0, x)
def forward(self, x: np.ndarray):
assert x.ndim == 1
x = (x - self.weights['input_norm_mat'][:, 0]) / (self.weights['input_norm_mat'][:, 1] - self.weights['input_norm_mat'][:, 0])
x = self.relu(np.dot(x, self.weights['w_1']) + self.weights['b_1'])
x = self.relu(np.dot(x, self.weights['w_2']) + self.weights['b_2'])
x = self.relu(np.dot(x, self.weights['w_3']) + self.weights['b_3'])
x = np.dot(x, self.weights['w_4']) + self.weights['b_4']
return x
def predict(self, x: list[float], do_sample: bool = False):
x = self.forward(np.array(x))
if do_sample:
pred = np.random.laplace(x[0], np.exp(x[1]) / self.weights['temperature'])
else:
pred = x[0]
pred = pred * (self.weights['output_norm_mat'][1] - self.weights['output_norm_mat'][0]) + self.weights['output_norm_mat'][0]
return pred
SendCan = tuple[int, int, bytes, int]
class CarControllerBase(ABC):
@abstractmethod
def update(self, CC, CS, now_nanos) -> tuple[car.CarControl.Actuators, list[SendCan]]:
pass