import math
import numpy as np
from cereal import log
from opendbc . car . interfaces import LatControlInputs
from opendbc . car . vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from openpilot . selfdrive . controls . lib . latcontrol import LatControl
from openpilot . common . pid import PIDController
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_X = [ 0 , 10 , 20 , 30 ]
LOW_SPEED_Y = [ 15 , 13 , 10 , 5 ]
class LatControlTorque ( LatControl ) :
def __init__ ( self , CP , CI ) :
super ( ) . __init__ ( CP , CI )
self . torque_params = CP . lateralTuning . torque . as_builder ( )
self . pid = PIDController ( self . torque_params . kp , self . torque_params . ki ,
k_f = self . torque_params . kf , pos_limit = self . steer_max , neg_limit = - self . steer_max )
self . torque_from_lateral_accel = CI . torque_from_lateral_accel ( )
self . use_steering_angle = self . torque_params . useSteeringAngle
self . steering_angle_deadzone_deg = self . torque_params . steeringAngleDeadzoneDeg
def update_live_torque_params ( self , latAccelFactor , latAccelOffset , friction ) :
self . torque_params . latAccelFactor = latAccelFactor
self . torque_params . latAccelOffset = latAccelOffset
self . torque_params . friction = friction
def update ( self , active , CS , VM , params , steer_limited_by_controls , desired_curvature , calibrated_pose , curvature_limited ) :
pid_log = log . ControlsState . LateralTorqueState . new_message ( )
if not active :
output_torque = 0.0
pid_log . active = False
else :
actual_curvature_vm = - VM . calc_curvature ( math . radians ( CS . steeringAngleDeg - params . angleOffsetDeg ) , CS . vEgo , params . roll )
roll_compensation = params . roll * ACCELERATION_DUE_TO_GRAVITY
if self . use_steering_angle :
actual_curvature = actual_curvature_vm
curvature_deadzone = abs ( VM . calc_curvature ( math . radians ( self . steering_angle_deadzone_deg ) , CS . vEgo , 0.0 ) )
else :
assert calibrated_pose is not None
actual_curvature_pose = calibrated_pose . angular_velocity . yaw / CS . vEgo
actual_curvature = np . interp ( CS . vEgo , [ 2.0 , 5.0 ] , [ actual_curvature_vm , actual_curvature_pose ] )
curvature_deadzone = 0.0
desired_lateral_accel = desired_curvature * CS . vEgo * * 2
# desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
# desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
actual_lateral_accel = actual_curvature * CS . vEgo * * 2
lateral_accel_deadzone = curvature_deadzone * CS . vEgo * * 2
low_speed_factor = np . interp ( CS . vEgo , LOW_SPEED_X , LOW_SPEED_Y ) * * 2
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
measurement = actual_lateral_accel + low_speed_factor * actual_curvature
gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation
torque_from_setpoint = self . torque_from_lateral_accel ( LatControlInputs ( setpoint , roll_compensation , CS . vEgo , CS . aEgo ) , self . torque_params ,
setpoint , lateral_accel_deadzone , friction_compensation = False , gravity_adjusted = False )
torque_from_measurement = self . torque_from_lateral_accel ( LatControlInputs ( measurement , roll_compensation , CS . vEgo , CS . aEgo ) , self . torque_params ,
measurement , lateral_accel_deadzone , friction_compensation = False , gravity_adjusted = False )
pid_log . error = float ( torque_from_setpoint - torque_from_measurement )
ff = self . torque_from_lateral_accel ( LatControlInputs ( gravity_adjusted_lateral_accel , roll_compensation , CS . vEgo , CS . aEgo ) , self . torque_params ,
desired_lateral_accel - actual_lateral_accel , lateral_accel_deadzone , friction_compensation = True ,
gravity_adjusted = True )
freeze_integrator = steer_limited_by_controls or CS . steeringPressed or CS . vEgo < 5
output_torque = self . pid . update ( pid_log . error ,
feedforward = ff ,
speed = CS . vEgo ,
freeze_integrator = freeze_integrator )
pid_log . active = True
pid_log . p = float ( self . pid . p )
pid_log . i = float ( self . pid . i )
pid_log . d = float ( self . pid . d )
pid_log . f = float ( self . pid . f )
pid_log . output = float ( - output_torque )
pid_log . actualLateralAccel = float ( actual_lateral_accel )
pid_log . desiredLateralAccel = float ( desired_lateral_accel )
pid_log . saturated = bool ( self . _check_saturation ( self . steer_max - abs ( output_torque ) < 1e-3 , CS , steer_limited_by_controls , curvature_limited ) )
# TODO left is positive in this convention
return - output_torque , 0.0 , pid_log