You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1819 lines
82 KiB
1819 lines
82 KiB
2 years ago
|
# -*- coding: future_fstrings -*-
|
||
|
#
|
||
|
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
|
||
|
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
|
||
|
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
|
||
|
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
|
||
|
#
|
||
|
# This file is part of acados.
|
||
|
#
|
||
|
# The 2-Clause BSD License
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer.
|
||
|
#
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.;
|
||
|
#
|
||
|
|
||
|
import sys
|
||
|
import os
|
||
|
import json
|
||
|
import numpy as np
|
||
|
from datetime import datetime
|
||
|
import importlib
|
||
|
from ctypes import POINTER, cast, CDLL, c_void_p, c_char_p, c_double, c_int, c_int64, byref
|
||
|
|
||
|
from copy import deepcopy
|
||
|
|
||
|
from .generate_c_code_explicit_ode import generate_c_code_explicit_ode
|
||
|
from .generate_c_code_implicit_ode import generate_c_code_implicit_ode
|
||
|
from .generate_c_code_gnsf import generate_c_code_gnsf
|
||
|
from .generate_c_code_discrete_dynamics import generate_c_code_discrete_dynamics
|
||
|
from .generate_c_code_constraint import generate_c_code_constraint
|
||
|
from .generate_c_code_nls_cost import generate_c_code_nls_cost
|
||
|
from .generate_c_code_external_cost import generate_c_code_external_cost
|
||
|
from .acados_ocp import AcadosOcp
|
||
|
from .acados_model import acados_model_strip_casadi_symbolics
|
||
|
from .utils import is_column, is_empty, casadi_length, render_template,\
|
||
|
format_class_dict, ocp_check_against_layout, np_array_to_list, make_model_consistent,\
|
||
|
set_up_imported_gnsf_model, get_ocp_nlp_layout, get_python_interface_path
|
||
|
from .builders import CMakeBuilder
|
||
|
|
||
|
|
||
|
def make_ocp_dims_consistent(acados_ocp):
|
||
|
dims = acados_ocp.dims
|
||
|
cost = acados_ocp.cost
|
||
|
constraints = acados_ocp.constraints
|
||
|
model = acados_ocp.model
|
||
|
opts = acados_ocp.solver_options
|
||
|
|
||
|
# nx
|
||
|
if is_column(model.x):
|
||
|
dims.nx = casadi_length(model.x)
|
||
|
else:
|
||
|
raise Exception('model.x should be column vector!')
|
||
|
|
||
|
# nu
|
||
|
if is_empty(model.u):
|
||
|
dims.nu = 0
|
||
|
else:
|
||
|
dims.nu = casadi_length(model.u)
|
||
|
|
||
|
# nz
|
||
|
if is_empty(model.z):
|
||
|
dims.nz = 0
|
||
|
else:
|
||
|
dims.nz = casadi_length(model.z)
|
||
|
|
||
|
# np
|
||
|
if is_empty(model.p):
|
||
|
dims.np = 0
|
||
|
else:
|
||
|
dims.np = casadi_length(model.p)
|
||
|
if acados_ocp.parameter_values.shape[0] != dims.np:
|
||
|
raise Exception('inconsistent dimension np, regarding model.p and parameter_values.' + \
|
||
|
f'\nGot np = {dims.np}, acados_ocp.parameter_values.shape = {acados_ocp.parameter_values.shape[0]}\n')
|
||
|
|
||
|
## cost
|
||
|
# initial stage - if not set, copy fields from path constraints
|
||
|
if cost.cost_type_0 is None:
|
||
|
cost.cost_type_0 = cost.cost_type
|
||
|
cost.W_0 = cost.W
|
||
|
cost.Vx_0 = cost.Vx
|
||
|
cost.Vu_0 = cost.Vu
|
||
|
cost.Vz_0 = cost.Vz
|
||
|
cost.yref_0 = cost.yref
|
||
|
cost.cost_ext_fun_type_0 = cost.cost_ext_fun_type
|
||
|
model.cost_y_expr_0 = model.cost_y_expr
|
||
|
model.cost_expr_ext_cost_0 = model.cost_expr_ext_cost
|
||
|
model.cost_expr_ext_cost_custom_hess_0 = model.cost_expr_ext_cost_custom_hess
|
||
|
|
||
|
if cost.cost_type_0 == 'LINEAR_LS':
|
||
|
ny_0 = cost.W_0.shape[0]
|
||
|
if cost.Vx_0.shape[0] != ny_0 or cost.Vu_0.shape[0] != ny_0:
|
||
|
raise Exception('inconsistent dimension ny_0, regarding W_0, Vx_0, Vu_0.' + \
|
||
|
f'\nGot W_0[{cost.W_0.shape}], Vx_0[{cost.Vx_0.shape}], Vu_0[{cost.Vu_0.shape}]\n')
|
||
|
if dims.nz != 0 and cost.Vz_0.shape[0] != ny_0:
|
||
|
raise Exception('inconsistent dimension ny_0, regarding W_0, Vx_0, Vu_0, Vz_0.' + \
|
||
|
f'\nGot W_0[{cost.W_0.shape}], Vx_0[{cost.Vx_0.shape}], Vu_0[{cost.Vu_0.shape}], Vz_0[{cost.Vz_0.shape}]\n')
|
||
|
if cost.Vx_0.shape[1] != dims.nx and ny_0 != 0:
|
||
|
raise Exception('inconsistent dimension: Vx_0 should have nx columns.')
|
||
|
if cost.Vu_0.shape[1] != dims.nu and ny_0 != 0:
|
||
|
raise Exception('inconsistent dimension: Vu_0 should have nu columns.')
|
||
|
if cost.yref_0.shape[0] != ny_0:
|
||
|
raise Exception('inconsistent dimension: regarding W_0, yref_0.' + \
|
||
|
f'\nGot W_0[{cost.W_0.shape}], yref_0[{cost.yref_0.shape}]\n')
|
||
|
dims.ny_0 = ny_0
|
||
|
|
||
|
elif cost.cost_type_0 == 'NONLINEAR_LS':
|
||
|
ny_0 = cost.W_0.shape[0]
|
||
|
if is_empty(model.cost_y_expr_0) and ny_0 != 0:
|
||
|
raise Exception('inconsistent dimension ny_0: regarding W_0, cost_y_expr.')
|
||
|
elif casadi_length(model.cost_y_expr_0) != ny_0:
|
||
|
raise Exception('inconsistent dimension ny_0: regarding W_0, cost_y_expr.')
|
||
|
if cost.yref_0.shape[0] != ny_0:
|
||
|
raise Exception('inconsistent dimension: regarding W_0, yref_0.' + \
|
||
|
f'\nGot W_0[{cost.W.shape}], yref_0[{cost.yref_0.shape}]\n')
|
||
|
dims.ny_0 = ny_0
|
||
|
|
||
|
elif cost.cost_type_0 == 'EXTERNAL':
|
||
|
if opts.hessian_approx == 'GAUSS_NEWTON' and opts.ext_cost_num_hess == 0 and model.cost_expr_ext_cost_custom_hess_0 is None:
|
||
|
print("\nWARNING: Gauss-Newton Hessian approximation with EXTERNAL cost type not possible!\n"
|
||
|
"got cost_type_0: EXTERNAL, hessian_approx: 'GAUSS_NEWTON.'\n"
|
||
|
"GAUSS_NEWTON hessian is only supported for cost_types [NON]LINEAR_LS.\n"
|
||
|
"If you continue, acados will proceed computing the exact hessian for the cost term.\n"
|
||
|
"Note: There is also the option to use the external cost module with a numerical hessian approximation (see `ext_cost_num_hess`).\n"
|
||
|
"OR the option to provide a symbolic custom hessian approximation (see `cost_expr_ext_cost_custom_hess`).\n")
|
||
|
|
||
|
# path
|
||
|
if cost.cost_type == 'LINEAR_LS':
|
||
|
ny = cost.W.shape[0]
|
||
|
if cost.Vx.shape[0] != ny or cost.Vu.shape[0] != ny:
|
||
|
raise Exception('inconsistent dimension ny, regarding W, Vx, Vu.' + \
|
||
|
f'\nGot W[{cost.W.shape}], Vx[{cost.Vx.shape}], Vu[{cost.Vu.shape}]\n')
|
||
|
if dims.nz != 0 and cost.Vz.shape[0] != ny:
|
||
|
raise Exception('inconsistent dimension ny, regarding W, Vx, Vu, Vz.' + \
|
||
|
f'\nGot W[{cost.W.shape}], Vx[{cost.Vx.shape}], Vu[{cost.Vu.shape}], Vz[{cost.Vz.shape}]\n')
|
||
|
if cost.Vx.shape[1] != dims.nx and ny != 0:
|
||
|
raise Exception('inconsistent dimension: Vx should have nx columns.')
|
||
|
if cost.Vu.shape[1] != dims.nu and ny != 0:
|
||
|
raise Exception('inconsistent dimension: Vu should have nu columns.')
|
||
|
if cost.yref.shape[0] != ny:
|
||
|
raise Exception('inconsistent dimension: regarding W, yref.' + \
|
||
|
f'\nGot W[{cost.W.shape}], yref[{cost.yref.shape}]\n')
|
||
|
dims.ny = ny
|
||
|
|
||
|
elif cost.cost_type == 'NONLINEAR_LS':
|
||
|
ny = cost.W.shape[0]
|
||
|
if is_empty(model.cost_y_expr) and ny != 0:
|
||
|
raise Exception('inconsistent dimension ny: regarding W, cost_y_expr.')
|
||
|
elif casadi_length(model.cost_y_expr) != ny:
|
||
|
raise Exception('inconsistent dimension ny: regarding W, cost_y_expr.')
|
||
|
if cost.yref.shape[0] != ny:
|
||
|
raise Exception('inconsistent dimension: regarding W, yref.' + \
|
||
|
f'\nGot W[{cost.W.shape}], yref[{cost.yref.shape}]\n')
|
||
|
dims.ny = ny
|
||
|
|
||
|
elif cost.cost_type == 'EXTERNAL':
|
||
|
if opts.hessian_approx == 'GAUSS_NEWTON' and opts.ext_cost_num_hess == 0 and model.cost_expr_ext_cost_custom_hess is None:
|
||
|
print("\nWARNING: Gauss-Newton Hessian approximation with EXTERNAL cost type not possible!\n"
|
||
|
"got cost_type: EXTERNAL, hessian_approx: 'GAUSS_NEWTON.'\n"
|
||
|
"GAUSS_NEWTON hessian is only supported for cost_types [NON]LINEAR_LS.\n"
|
||
|
"If you continue, acados will proceed computing the exact hessian for the cost term.\n"
|
||
|
"Note: There is also the option to use the external cost module with a numerical hessian approximation (see `ext_cost_num_hess`).\n"
|
||
|
"OR the option to provide a symbolic custom hessian approximation (see `cost_expr_ext_cost_custom_hess`).\n")
|
||
|
|
||
|
# terminal
|
||
|
if cost.cost_type_e == 'LINEAR_LS':
|
||
|
ny_e = cost.W_e.shape[0]
|
||
|
if cost.Vx_e.shape[0] != ny_e:
|
||
|
raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.' + \
|
||
|
f'\nGot W_e[{cost.W_e.shape}], Vx_e[{cost.Vx_e.shape}]')
|
||
|
if cost.Vx_e.shape[1] != dims.nx and ny_e != 0:
|
||
|
raise Exception('inconsistent dimension: Vx_e should have nx columns.')
|
||
|
if cost.yref_e.shape[0] != ny_e:
|
||
|
raise Exception('inconsistent dimension: regarding W_e, yref_e.')
|
||
|
dims.ny_e = ny_e
|
||
|
|
||
|
elif cost.cost_type_e == 'NONLINEAR_LS':
|
||
|
ny_e = cost.W_e.shape[0]
|
||
|
if is_empty(model.cost_y_expr_e) and ny_e != 0:
|
||
|
raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.')
|
||
|
elif casadi_length(model.cost_y_expr_e) != ny_e:
|
||
|
raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.')
|
||
|
if cost.yref_e.shape[0] != ny_e:
|
||
|
raise Exception('inconsistent dimension: regarding W_e, yref_e.')
|
||
|
dims.ny_e = ny_e
|
||
|
|
||
|
elif cost.cost_type_e == 'EXTERNAL':
|
||
|
if opts.hessian_approx == 'GAUSS_NEWTON' and opts.ext_cost_num_hess == 0 and model.cost_expr_ext_cost_custom_hess_e is None:
|
||
|
print("\nWARNING: Gauss-Newton Hessian approximation with EXTERNAL cost type not possible!\n"
|
||
|
"got cost_type_e: EXTERNAL, hessian_approx: 'GAUSS_NEWTON.'\n"
|
||
|
"GAUSS_NEWTON hessian is only supported for cost_types [NON]LINEAR_LS.\n"
|
||
|
"If you continue, acados will proceed computing the exact hessian for the cost term.\n"
|
||
|
"Note: There is also the option to use the external cost module with a numerical hessian approximation (see `ext_cost_num_hess`).\n"
|
||
|
"OR the option to provide a symbolic custom hessian approximation (see `cost_expr_ext_cost_custom_hess`).\n")
|
||
|
|
||
|
## constraints
|
||
|
# initial
|
||
|
if (constraints.lbx_0 == [] and constraints.ubx_0 == []):
|
||
|
dims.nbx_0 = 0
|
||
|
else:
|
||
|
this_shape = constraints.lbx_0.shape
|
||
|
other_shape = constraints.ubx_0.shape
|
||
|
if not this_shape == other_shape:
|
||
|
raise Exception('lbx_0, ubx_0 have different shapes!')
|
||
|
if not is_column(constraints.lbx_0):
|
||
|
raise Exception('lbx_0, ubx_0 must be column vectors!')
|
||
|
dims.nbx_0 = constraints.lbx_0.size
|
||
|
|
||
|
if all(constraints.lbx_0 == constraints.ubx_0) and dims.nbx_0 == dims.nx \
|
||
|
and dims.nbxe_0 is None \
|
||
|
and (constraints.idxbxe_0.shape == constraints.idxbx_0.shape)\
|
||
|
and all(constraints.idxbxe_0 == constraints.idxbx_0):
|
||
|
# case: x0 was set: nbx0 are all equlities.
|
||
|
dims.nbxe_0 = dims.nbx_0
|
||
|
elif dims.nbxe_0 is None:
|
||
|
# case: x0 was not set -> dont assume nbx0 to be equality constraints.
|
||
|
dims.nbxe_0 = 0
|
||
|
|
||
|
# path
|
||
|
nbx = constraints.idxbx.shape[0]
|
||
|
if constraints.ubx.shape[0] != nbx or constraints.lbx.shape[0] != nbx:
|
||
|
raise Exception('inconsistent dimension nbx, regarding idxbx, ubx, lbx.')
|
||
|
else:
|
||
|
dims.nbx = nbx
|
||
|
|
||
|
nbu = constraints.idxbu.shape[0]
|
||
|
if constraints.ubu.shape[0] != nbu or constraints.lbu.shape[0] != nbu:
|
||
|
raise Exception('inconsistent dimension nbu, regarding idxbu, ubu, lbu.')
|
||
|
else:
|
||
|
dims.nbu = nbu
|
||
|
|
||
|
ng = constraints.lg.shape[0]
|
||
|
if constraints.ug.shape[0] != ng or constraints.C.shape[0] != ng \
|
||
|
or constraints.D.shape[0] != ng:
|
||
|
raise Exception('inconsistent dimension ng, regarding lg, ug, C, D.')
|
||
|
else:
|
||
|
dims.ng = ng
|
||
|
|
||
|
if not is_empty(model.con_h_expr):
|
||
|
nh = casadi_length(model.con_h_expr)
|
||
|
else:
|
||
|
nh = 0
|
||
|
|
||
|
if constraints.uh.shape[0] != nh or constraints.lh.shape[0] != nh:
|
||
|
raise Exception('inconsistent dimension nh, regarding lh, uh, con_h_expr.')
|
||
|
else:
|
||
|
dims.nh = nh
|
||
|
|
||
|
if is_empty(model.con_phi_expr):
|
||
|
dims.nphi = 0
|
||
|
dims.nr = 0
|
||
|
else:
|
||
|
dims.nphi = casadi_length(model.con_phi_expr)
|
||
|
if is_empty(model.con_r_expr):
|
||
|
raise Exception('convex over nonlinear constraints: con_r_expr but con_phi_expr is nonempty')
|
||
|
else:
|
||
|
dims.nr = casadi_length(model.con_r_expr)
|
||
|
|
||
|
# terminal
|
||
|
nbx_e = constraints.idxbx_e.shape[0]
|
||
|
if constraints.ubx_e.shape[0] != nbx_e or constraints.lbx_e.shape[0] != nbx_e:
|
||
|
raise Exception('inconsistent dimension nbx_e, regarding idxbx_e, ubx_e, lbx_e.')
|
||
|
else:
|
||
|
dims.nbx_e = nbx_e
|
||
|
|
||
|
ng_e = constraints.lg_e.shape[0]
|
||
|
if constraints.ug_e.shape[0] != ng_e or constraints.C_e.shape[0] != ng_e:
|
||
|
raise Exception('inconsistent dimension ng_e, regarding_e lg_e, ug_e, C_e.')
|
||
|
else:
|
||
|
dims.ng_e = ng_e
|
||
|
|
||
|
if not is_empty(model.con_h_expr_e):
|
||
|
nh_e = casadi_length(model.con_h_expr_e)
|
||
|
else:
|
||
|
nh_e = 0
|
||
|
|
||
|
if constraints.uh_e.shape[0] != nh_e or constraints.lh_e.shape[0] != nh_e:
|
||
|
raise Exception('inconsistent dimension nh_e, regarding lh_e, uh_e, con_h_expr_e.')
|
||
|
else:
|
||
|
dims.nh_e = nh_e
|
||
|
|
||
|
if is_empty(model.con_phi_expr_e):
|
||
|
dims.nphi_e = 0
|
||
|
dims.nr_e = 0
|
||
|
else:
|
||
|
dims.nphi_e = casadi_length(model.con_phi_expr_e)
|
||
|
if is_empty(model.con_r_expr_e):
|
||
|
raise Exception('convex over nonlinear constraints: con_r_expr_e but con_phi_expr_e is nonempty')
|
||
|
else:
|
||
|
dims.nr_e = casadi_length(model.con_r_expr_e)
|
||
|
|
||
|
# Slack dimensions
|
||
|
nsbx = constraints.idxsbx.shape[0]
|
||
|
if is_empty(constraints.lsbx):
|
||
|
constraints.lsbx = np.zeros((nsbx,))
|
||
|
elif constraints.lsbx.shape[0] != nsbx:
|
||
|
raise Exception('inconsistent dimension nsbx, regarding idxsbx, lsbx.')
|
||
|
if is_empty(constraints.usbx):
|
||
|
constraints.usbx = np.zeros((nsbx,))
|
||
|
elif constraints.usbx.shape[0] != nsbx:
|
||
|
raise Exception('inconsistent dimension nsbx, regarding idxsbx, usbx.')
|
||
|
dims.nsbx = nsbx
|
||
|
|
||
|
nsbu = constraints.idxsbu.shape[0]
|
||
|
if is_empty(constraints.lsbu):
|
||
|
constraints.lsbu = np.zeros((nsbu,))
|
||
|
elif constraints.lsbu.shape[0] != nsbu:
|
||
|
raise Exception('inconsistent dimension nsbu, regarding idxsbu, lsbu.')
|
||
|
if is_empty(constraints.usbu):
|
||
|
constraints.usbu = np.zeros((nsbu,))
|
||
|
elif constraints.usbu.shape[0] != nsbu:
|
||
|
raise Exception('inconsistent dimension nsbu, regarding idxsbu, usbu.')
|
||
|
dims.nsbu = nsbu
|
||
|
|
||
|
nsh = constraints.idxsh.shape[0]
|
||
|
if is_empty(constraints.lsh):
|
||
|
constraints.lsh = np.zeros((nsh,))
|
||
|
elif constraints.lsh.shape[0] != nsh:
|
||
|
raise Exception('inconsistent dimension nsh, regarding idxsh, lsh.')
|
||
|
if is_empty(constraints.ush):
|
||
|
constraints.ush = np.zeros((nsh,))
|
||
|
elif constraints.ush.shape[0] != nsh:
|
||
|
raise Exception('inconsistent dimension nsh, regarding idxsh, ush.')
|
||
|
dims.nsh = nsh
|
||
|
|
||
|
nsphi = constraints.idxsphi.shape[0]
|
||
|
if is_empty(constraints.lsphi):
|
||
|
constraints.lsphi = np.zeros((nsphi,))
|
||
|
elif constraints.lsphi.shape[0] != nsphi:
|
||
|
raise Exception('inconsistent dimension nsphi, regarding idxsphi, lsphi.')
|
||
|
if is_empty(constraints.usphi):
|
||
|
constraints.usphi = np.zeros((nsphi,))
|
||
|
elif constraints.usphi.shape[0] != nsphi:
|
||
|
raise Exception('inconsistent dimension nsphi, regarding idxsphi, usphi.')
|
||
|
dims.nsphi = nsphi
|
||
|
|
||
|
nsg = constraints.idxsg.shape[0]
|
||
|
if is_empty(constraints.lsg):
|
||
|
constraints.lsg = np.zeros((nsg,))
|
||
|
elif constraints.lsg.shape[0] != nsg:
|
||
|
raise Exception('inconsistent dimension nsg, regarding idxsg, lsg.')
|
||
|
if is_empty(constraints.usg):
|
||
|
constraints.usg = np.zeros((nsg,))
|
||
|
elif constraints.usg.shape[0] != nsg:
|
||
|
raise Exception('inconsistent dimension nsg, regarding idxsg, usg.')
|
||
|
dims.nsg = nsg
|
||
|
|
||
|
ns = nsbx + nsbu + nsh + nsg + nsphi
|
||
|
wrong_field = ""
|
||
|
if cost.Zl.shape[0] != ns:
|
||
|
wrong_field = "Zl"
|
||
|
dim = cost.Zl.shape[0]
|
||
|
elif cost.Zu.shape[0] != ns:
|
||
|
wrong_field = "Zu"
|
||
|
dim = cost.Zu.shape[0]
|
||
|
elif cost.zl.shape[0] != ns:
|
||
|
wrong_field = "zl"
|
||
|
dim = cost.zl.shape[0]
|
||
|
elif cost.zu.shape[0] != ns:
|
||
|
wrong_field = "zu"
|
||
|
dim = cost.zu.shape[0]
|
||
|
|
||
|
if wrong_field != "":
|
||
|
raise Exception(f'Inconsistent size for field {wrong_field}, with dimension {dim}, \n\t'\
|
||
|
+ f'Detected ns = {ns} = nsbx + nsbu + nsg + nsh + nsphi.\n\t'\
|
||
|
+ f'With nsbx = {nsbx}, nsbu = {nsbu}, nsg = {nsg}, nsh = {nsh}, nsphi = {nsphi}')
|
||
|
|
||
|
dims.ns = ns
|
||
|
|
||
|
nsbx_e = constraints.idxsbx_e.shape[0]
|
||
|
if is_empty(constraints.lsbx_e):
|
||
|
constraints.lsbx_e = np.zeros((nsbx_e,))
|
||
|
elif constraints.lsbx_e.shape[0] != nsbx_e:
|
||
|
raise Exception('inconsistent dimension nsbx_e, regarding idxsbx_e, lsbx_e.')
|
||
|
if is_empty(constraints.usbx_e):
|
||
|
constraints.usbx_e = np.zeros((nsbx_e,))
|
||
|
elif constraints.usbx_e.shape[0] != nsbx_e:
|
||
|
raise Exception('inconsistent dimension nsbx_e, regarding idxsbx_e, usbx_e.')
|
||
|
dims.nsbx_e = nsbx_e
|
||
|
|
||
|
nsh_e = constraints.idxsh_e.shape[0]
|
||
|
if is_empty(constraints.lsh_e):
|
||
|
constraints.lsh_e = np.zeros((nsh_e,))
|
||
|
elif constraints.lsh_e.shape[0] != nsh_e:
|
||
|
raise Exception('inconsistent dimension nsh_e, regarding idxsh_e, lsh_e.')
|
||
|
if is_empty(constraints.ush_e):
|
||
|
constraints.ush_e = np.zeros((nsh_e,))
|
||
|
elif constraints.ush_e.shape[0] != nsh_e:
|
||
|
raise Exception('inconsistent dimension nsh_e, regarding idxsh_e, ush_e.')
|
||
|
dims.nsh_e = nsh_e
|
||
|
|
||
|
nsg_e = constraints.idxsg_e.shape[0]
|
||
|
if is_empty(constraints.lsg_e):
|
||
|
constraints.lsg_e = np.zeros((nsg_e,))
|
||
|
elif constraints.lsg_e.shape[0] != nsg_e:
|
||
|
raise Exception('inconsistent dimension nsg_e, regarding idxsg_e, lsg_e.')
|
||
|
if is_empty(constraints.usg_e):
|
||
|
constraints.usg_e = np.zeros((nsg_e,))
|
||
|
elif constraints.usg_e.shape[0] != nsg_e:
|
||
|
raise Exception('inconsistent dimension nsg_e, regarding idxsg_e, usg_e.')
|
||
|
dims.nsg_e = nsg_e
|
||
|
|
||
|
nsphi_e = constraints.idxsphi_e.shape[0]
|
||
|
if is_empty(constraints.lsphi_e):
|
||
|
constraints.lsphi_e = np.zeros((nsphi_e,))
|
||
|
elif constraints.lsphi_e.shape[0] != nsphi_e:
|
||
|
raise Exception('inconsistent dimension nsphi_e, regarding idxsphi_e, lsphi_e.')
|
||
|
if is_empty(constraints.usphi_e):
|
||
|
constraints.usphi_e = np.zeros((nsphi_e,))
|
||
|
elif constraints.usphi_e.shape[0] != nsphi_e:
|
||
|
raise Exception('inconsistent dimension nsphi_e, regarding idxsphi_e, usphi_e.')
|
||
|
dims.nsphi_e = nsphi_e
|
||
|
|
||
|
# terminal
|
||
|
ns_e = nsbx_e + nsh_e + nsg_e + nsphi_e
|
||
|
wrong_field = ""
|
||
|
if cost.Zl_e.shape[0] != ns_e:
|
||
|
wrong_field = "Zl_e"
|
||
|
dim = cost.Zl_e.shape[0]
|
||
|
elif cost.Zu_e.shape[0] != ns_e:
|
||
|
wrong_field = "Zu_e"
|
||
|
dim = cost.Zu_e.shape[0]
|
||
|
elif cost.zl_e.shape[0] != ns_e:
|
||
|
wrong_field = "zl_e"
|
||
|
dim = cost.zl_e.shape[0]
|
||
|
elif cost.zu_e.shape[0] != ns_e:
|
||
|
wrong_field = "zu_e"
|
||
|
dim = cost.zu_e.shape[0]
|
||
|
|
||
|
if wrong_field != "":
|
||
|
raise Exception(f'Inconsistent size for field {wrong_field}, with dimension {dim}, \n\t'\
|
||
|
+ f'Detected ns_e = {ns_e} = nsbx_e + nsg_e + nsh_e + nsphi_e.\n\t'\
|
||
|
+ f'With nsbx_e = {nsbx_e}, nsg_e = {nsg_e}, nsh_e = {nsh_e}, nsphi_e = {nsphi_e}')
|
||
|
|
||
|
dims.ns_e = ns_e
|
||
|
|
||
|
# discretization
|
||
|
if is_empty(opts.time_steps) and is_empty(opts.shooting_nodes):
|
||
|
# uniform discretization
|
||
|
opts.time_steps = opts.tf / dims.N * np.ones((dims.N,))
|
||
|
|
||
|
elif not is_empty(opts.shooting_nodes):
|
||
|
if np.shape(opts.shooting_nodes)[0] != dims.N+1:
|
||
|
raise Exception('inconsistent dimension N, regarding shooting_nodes.')
|
||
|
|
||
|
time_steps = opts.shooting_nodes[1:] - opts.shooting_nodes[0:-1]
|
||
|
# identify constant time_steps: due to numerical reasons the content of time_steps might vary a bit
|
||
|
avg_time_steps = np.average(time_steps)
|
||
|
# criterion for constant time step detection: the min/max difference in values normalized by the average
|
||
|
check_const_time_step = (np.max(time_steps)-np.min(time_steps)) / avg_time_steps
|
||
|
# if the criterion is small, we have a constant time_step
|
||
|
if check_const_time_step < 1e-9:
|
||
|
time_steps[:] = avg_time_steps # if we have a constant time_step: apply the average time_step
|
||
|
|
||
|
opts.time_steps = time_steps
|
||
|
|
||
|
elif (not is_empty(opts.time_steps)) and (not is_empty(opts.shooting_nodes)):
|
||
|
Exception('Please provide either time_steps or shooting_nodes for nonuniform discretization')
|
||
|
|
||
|
tf = np.sum(opts.time_steps)
|
||
|
if (tf - opts.tf) / tf > 1e-15:
|
||
|
raise Exception(f'Inconsistent discretization: {opts.tf}'\
|
||
|
f' = tf != sum(opts.time_steps) = {tf}.')
|
||
|
|
||
|
# num_steps
|
||
|
if isinstance(opts.sim_method_num_steps, np.ndarray) and opts.sim_method_num_steps.size == 1:
|
||
|
opts.sim_method_num_steps = opts.sim_method_num_steps.item()
|
||
|
|
||
|
if isinstance(opts.sim_method_num_steps, (int, float)) and opts.sim_method_num_steps % 1 == 0:
|
||
|
opts.sim_method_num_steps = opts.sim_method_num_steps * np.ones((dims.N,), dtype=np.int64)
|
||
|
elif isinstance(opts.sim_method_num_steps, np.ndarray) and opts.sim_method_num_steps.size == dims.N \
|
||
|
and np.all(np.equal(np.mod(opts.sim_method_num_steps, 1), 0)):
|
||
|
opts.sim_method_num_steps = np.reshape(opts.sim_method_num_steps, (dims.N,)).astype(np.int64)
|
||
|
else:
|
||
|
raise Exception("Wrong value for sim_method_num_steps. Should be either int or array of ints of shape (N,).")
|
||
|
|
||
|
# num_stages
|
||
|
if isinstance(opts.sim_method_num_stages, np.ndarray) and opts.sim_method_num_stages.size == 1:
|
||
|
opts.sim_method_num_stages = opts.sim_method_num_stages.item()
|
||
|
|
||
|
if isinstance(opts.sim_method_num_stages, (int, float)) and opts.sim_method_num_stages % 1 == 0:
|
||
|
opts.sim_method_num_stages = opts.sim_method_num_stages * np.ones((dims.N,), dtype=np.int64)
|
||
|
elif isinstance(opts.sim_method_num_stages, np.ndarray) and opts.sim_method_num_stages.size == dims.N \
|
||
|
and np.all(np.equal(np.mod(opts.sim_method_num_stages, 1), 0)):
|
||
|
opts.sim_method_num_stages = np.reshape(opts.sim_method_num_stages, (dims.N,)).astype(np.int64)
|
||
|
else:
|
||
|
raise Exception("Wrong value for sim_method_num_stages. Should be either int or array of ints of shape (N,).")
|
||
|
|
||
|
# jac_reuse
|
||
|
if isinstance(opts.sim_method_jac_reuse, np.ndarray) and opts.sim_method_jac_reuse.size == 1:
|
||
|
opts.sim_method_jac_reuse = opts.sim_method_jac_reuse.item()
|
||
|
|
||
|
if isinstance(opts.sim_method_jac_reuse, (int, float)) and opts.sim_method_jac_reuse % 1 == 0:
|
||
|
opts.sim_method_jac_reuse = opts.sim_method_jac_reuse * np.ones((dims.N,), dtype=np.int64)
|
||
|
elif isinstance(opts.sim_method_jac_reuse, np.ndarray) and opts.sim_method_jac_reuse.size == dims.N \
|
||
|
and np.all(np.equal(np.mod(opts.sim_method_jac_reuse, 1), 0)):
|
||
|
opts.sim_method_jac_reuse = np.reshape(opts.sim_method_jac_reuse, (dims.N,)).astype(np.int64)
|
||
|
else:
|
||
|
raise Exception("Wrong value for sim_method_jac_reuse. Should be either int or array of ints of shape (N,).")
|
||
|
|
||
|
|
||
|
def get_simulink_default_opts():
|
||
|
python_interface_path = get_python_interface_path()
|
||
|
abs_path = os.path.join(python_interface_path, 'simulink_default_opts.json')
|
||
|
with open(abs_path , 'r') as f:
|
||
|
simulink_default_opts = json.load(f)
|
||
|
return simulink_default_opts
|
||
|
|
||
|
|
||
|
def ocp_formulation_json_dump(acados_ocp, simulink_opts, json_file='acados_ocp_nlp.json'):
|
||
|
# Load acados_ocp_nlp structure description
|
||
|
ocp_layout = get_ocp_nlp_layout()
|
||
|
|
||
|
# Copy input ocp object dictionary
|
||
|
ocp_nlp_dict = dict(deepcopy(acados_ocp).__dict__)
|
||
|
# TODO: maybe make one function with formatting
|
||
|
|
||
|
for acados_struct, v in ocp_layout.items():
|
||
|
# skip non dict attributes
|
||
|
if not isinstance(v, dict):
|
||
|
continue
|
||
|
# setattr(ocp_nlp, acados_struct, dict(getattr(acados_ocp, acados_struct).__dict__))
|
||
|
# Copy ocp object attributes dictionaries
|
||
|
ocp_nlp_dict[acados_struct]=dict(getattr(acados_ocp, acados_struct).__dict__)
|
||
|
|
||
|
ocp_nlp_dict = format_class_dict(ocp_nlp_dict)
|
||
|
|
||
|
# strip symbolics
|
||
|
ocp_nlp_dict['model'] = acados_model_strip_casadi_symbolics(ocp_nlp_dict['model'])
|
||
|
|
||
|
# strip shooting_nodes
|
||
|
ocp_nlp_dict['solver_options'].pop('shooting_nodes', None)
|
||
|
dims_dict = format_class_dict(acados_ocp.dims.__dict__)
|
||
|
|
||
|
ocp_check_against_layout(ocp_nlp_dict, dims_dict)
|
||
|
|
||
|
# add simulink options
|
||
|
ocp_nlp_dict['simulink_opts'] = simulink_opts
|
||
|
|
||
|
with open(json_file, 'w') as f:
|
||
|
json.dump(ocp_nlp_dict, f, default=np_array_to_list, indent=4, sort_keys=True)
|
||
|
|
||
|
|
||
|
|
||
|
def ocp_formulation_json_load(json_file='acados_ocp_nlp.json'):
|
||
|
# Load acados_ocp_nlp structure description
|
||
|
ocp_layout = get_ocp_nlp_layout()
|
||
|
|
||
|
with open(json_file, 'r') as f:
|
||
|
ocp_nlp_json = json.load(f)
|
||
|
|
||
|
ocp_nlp_dict = json2dict(ocp_nlp_json, ocp_nlp_json['dims'])
|
||
|
|
||
|
# Instantiate AcadosOcp object
|
||
|
acados_ocp = AcadosOcp()
|
||
|
|
||
|
# load class dict
|
||
|
acados_ocp.__dict__ = ocp_nlp_dict
|
||
|
|
||
|
# load class attributes dict, dims, constraints, etc
|
||
|
for acados_struct, v in ocp_layout.items():
|
||
|
# skip non dict attributes
|
||
|
if not isinstance(v, dict):
|
||
|
continue
|
||
|
acados_attribute = getattr(acados_ocp, acados_struct)
|
||
|
acados_attribute.__dict__ = ocp_nlp_dict[acados_struct]
|
||
|
setattr(acados_ocp, acados_struct, acados_attribute)
|
||
|
|
||
|
return acados_ocp
|
||
|
|
||
|
|
||
|
def ocp_generate_external_functions(acados_ocp, model):
|
||
|
|
||
|
model = make_model_consistent(model)
|
||
|
|
||
|
if acados_ocp.solver_options.hessian_approx == 'EXACT':
|
||
|
opts = dict(generate_hess=1)
|
||
|
else:
|
||
|
opts = dict(generate_hess=0)
|
||
|
code_export_dir = acados_ocp.code_export_directory
|
||
|
opts['code_export_directory'] = code_export_dir
|
||
|
|
||
|
if acados_ocp.model.dyn_ext_fun_type != 'casadi':
|
||
|
raise Exception("ocp_generate_external_functions: dyn_ext_fun_type only supports 'casadi' for now.\
|
||
|
Extending the Python interface with generic function support is welcome.")
|
||
|
|
||
|
if acados_ocp.solver_options.integrator_type == 'ERK':
|
||
|
# explicit model -- generate C code
|
||
|
generate_c_code_explicit_ode(model, opts)
|
||
|
elif acados_ocp.solver_options.integrator_type == 'IRK':
|
||
|
# implicit model -- generate C code
|
||
|
generate_c_code_implicit_ode(model, opts)
|
||
|
elif acados_ocp.solver_options.integrator_type == 'LIFTED_IRK':
|
||
|
generate_c_code_implicit_ode(model, opts)
|
||
|
elif acados_ocp.solver_options.integrator_type == 'GNSF':
|
||
|
generate_c_code_gnsf(model, opts)
|
||
|
elif acados_ocp.solver_options.integrator_type == 'DISCRETE':
|
||
|
generate_c_code_discrete_dynamics(model, opts)
|
||
|
else:
|
||
|
raise Exception("ocp_generate_external_functions: unknown integrator type.")
|
||
|
|
||
|
if acados_ocp.dims.nphi > 0 or acados_ocp.dims.nh > 0:
|
||
|
generate_c_code_constraint(model, model.name, False, opts)
|
||
|
|
||
|
if acados_ocp.dims.nphi_e > 0 or acados_ocp.dims.nh_e > 0:
|
||
|
generate_c_code_constraint(model, model.name, True, opts)
|
||
|
|
||
|
# dummy matrices
|
||
|
if not acados_ocp.cost.cost_type_0 == 'LINEAR_LS':
|
||
|
acados_ocp.cost.Vx_0 = np.zeros((acados_ocp.dims.ny_0, acados_ocp.dims.nx))
|
||
|
acados_ocp.cost.Vu_0 = np.zeros((acados_ocp.dims.ny_0, acados_ocp.dims.nu))
|
||
|
if not acados_ocp.cost.cost_type == 'LINEAR_LS':
|
||
|
acados_ocp.cost.Vx = np.zeros((acados_ocp.dims.ny, acados_ocp.dims.nx))
|
||
|
acados_ocp.cost.Vu = np.zeros((acados_ocp.dims.ny, acados_ocp.dims.nu))
|
||
|
if not acados_ocp.cost.cost_type_e == 'LINEAR_LS':
|
||
|
acados_ocp.cost.Vx_e = np.zeros((acados_ocp.dims.ny_e, acados_ocp.dims.nx))
|
||
|
|
||
|
if acados_ocp.cost.cost_type_0 == 'NONLINEAR_LS':
|
||
|
generate_c_code_nls_cost(model, model.name, 'initial', opts)
|
||
|
elif acados_ocp.cost.cost_type_0 == 'EXTERNAL':
|
||
|
generate_c_code_external_cost(model, 'initial', opts)
|
||
|
|
||
|
if acados_ocp.cost.cost_type == 'NONLINEAR_LS':
|
||
|
generate_c_code_nls_cost(model, model.name, 'path', opts)
|
||
|
elif acados_ocp.cost.cost_type == 'EXTERNAL':
|
||
|
generate_c_code_external_cost(model, 'path', opts)
|
||
|
|
||
|
if acados_ocp.cost.cost_type_e == 'NONLINEAR_LS':
|
||
|
generate_c_code_nls_cost(model, model.name, 'terminal', opts)
|
||
|
elif acados_ocp.cost.cost_type_e == 'EXTERNAL':
|
||
|
generate_c_code_external_cost(model, 'terminal', opts)
|
||
|
|
||
|
|
||
|
def ocp_get_default_cmake_builder() -> CMakeBuilder:
|
||
|
"""
|
||
|
If :py:class:`~acados_template.acados_ocp_solver.AcadosOcpSolver` is used with `CMake` this function returns a good first setting.
|
||
|
:return: default :py:class:`~acados_template.builders.CMakeBuilder`
|
||
|
"""
|
||
|
cmake_builder = CMakeBuilder()
|
||
|
cmake_builder.options_on = ['BUILD_ACADOS_OCP_SOLVER_LIB']
|
||
|
return cmake_builder
|
||
|
|
||
|
|
||
|
def ocp_render_templates(acados_ocp, json_file, cmake_builder=None):
|
||
|
|
||
|
name = acados_ocp.model.name
|
||
|
|
||
|
# setting up loader and environment
|
||
|
json_path = os.path.abspath(json_file)
|
||
|
|
||
|
if not os.path.exists(json_path):
|
||
|
raise Exception(f'Path "{json_path}" not found!')
|
||
|
|
||
|
code_export_dir = acados_ocp.code_export_directory
|
||
|
template_dir = code_export_dir
|
||
|
|
||
|
## Render templates
|
||
|
in_file = 'main.in.c'
|
||
|
out_file = f'main_{name}.c'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'acados_solver.in.c'
|
||
|
out_file = f'acados_solver_{name}.c'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'acados_solver.in.h'
|
||
|
out_file = f'acados_solver_{name}.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'acados_solver.in.pxd'
|
||
|
out_file = f'acados_solver.pxd'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
if cmake_builder is not None:
|
||
|
in_file = 'CMakeLists.in.txt'
|
||
|
out_file = 'CMakeLists.txt'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
else:
|
||
|
in_file = 'Makefile.in'
|
||
|
out_file = 'Makefile'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'acados_solver_sfun.in.c'
|
||
|
out_file = f'acados_solver_sfunction_{name}.c'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'make_sfun.in.m'
|
||
|
out_file = f'make_sfun_{name}.m'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# sim
|
||
|
in_file = 'acados_sim_solver.in.c'
|
||
|
out_file = f'acados_sim_solver_{name}.c'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'acados_sim_solver.in.h'
|
||
|
out_file = f'acados_sim_solver_{name}.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
in_file = 'main_sim.in.c'
|
||
|
out_file = f'main_sim_{name}.c'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
## folder model
|
||
|
template_dir = os.path.join(code_export_dir, name + '_model')
|
||
|
in_file = 'model.in.h'
|
||
|
out_file = f'{name}_model.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# constraints on convex over nonlinear function
|
||
|
if acados_ocp.constraints.constr_type == 'BGP' and acados_ocp.dims.nphi > 0:
|
||
|
# constraints on outer function
|
||
|
template_dir = os.path.join(code_export_dir, name + '_constraints')
|
||
|
in_file = 'phi_constraint.in.h'
|
||
|
out_file = f'{name}_phi_constraint.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# terminal constraints on convex over nonlinear function
|
||
|
if acados_ocp.constraints.constr_type_e == 'BGP' and acados_ocp.dims.nphi_e > 0:
|
||
|
# terminal constraints on outer function
|
||
|
template_dir = os.path.join(code_export_dir, name + '_constraints')
|
||
|
in_file = 'phi_e_constraint.in.h'
|
||
|
out_file = f'{name}_phi_e_constraint.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# nonlinear constraints
|
||
|
if acados_ocp.constraints.constr_type == 'BGH' and acados_ocp.dims.nh > 0:
|
||
|
template_dir = os.path.join(code_export_dir, name + '_constraints')
|
||
|
in_file = 'h_constraint.in.h'
|
||
|
out_file = f'{name}_h_constraint.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# terminal nonlinear constraints
|
||
|
if acados_ocp.constraints.constr_type_e == 'BGH' and acados_ocp.dims.nh_e > 0:
|
||
|
template_dir = os.path.join(code_export_dir, name + '_constraints')
|
||
|
in_file = 'h_e_constraint.in.h'
|
||
|
out_file = f'{name}_h_e_constraint.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# initial stage Nonlinear LS cost function
|
||
|
if acados_ocp.cost.cost_type_0 == 'NONLINEAR_LS':
|
||
|
template_dir = os.path.join(code_export_dir, name + '_cost')
|
||
|
in_file = 'cost_y_0_fun.in.h'
|
||
|
out_file = f'{name}_cost_y_0_fun.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
# external cost - terminal
|
||
|
elif acados_ocp.cost.cost_type_0 == 'EXTERNAL':
|
||
|
template_dir = os.path.join(code_export_dir, name + '_cost')
|
||
|
in_file = 'external_cost_0.in.h'
|
||
|
out_file = f'{name}_external_cost_0.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# path Nonlinear LS cost function
|
||
|
if acados_ocp.cost.cost_type == 'NONLINEAR_LS':
|
||
|
template_dir = os.path.join(code_export_dir, name + '_cost')
|
||
|
in_file = 'cost_y_fun.in.h'
|
||
|
out_file = f'{name}_cost_y_fun.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# terminal Nonlinear LS cost function
|
||
|
if acados_ocp.cost.cost_type_e == 'NONLINEAR_LS':
|
||
|
template_dir = os.path.join(code_export_dir, name + '_cost')
|
||
|
in_file = 'cost_y_e_fun.in.h'
|
||
|
out_file = f'{name}_cost_y_e_fun.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# external cost
|
||
|
if acados_ocp.cost.cost_type == 'EXTERNAL':
|
||
|
template_dir = os.path.join(code_export_dir, name + '_cost')
|
||
|
in_file = 'external_cost.in.h'
|
||
|
out_file = f'{name}_external_cost.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
# external cost - terminal
|
||
|
if acados_ocp.cost.cost_type_e == 'EXTERNAL':
|
||
|
template_dir = os.path.join(code_export_dir, name + '_cost')
|
||
|
in_file = 'external_cost_e.in.h'
|
||
|
out_file = f'{name}_external_cost_e.h'
|
||
|
render_template(in_file, out_file, template_dir, json_path)
|
||
|
|
||
|
|
||
|
def remove_x0_elimination(acados_ocp):
|
||
|
acados_ocp.constraints.idxbxe_0 = np.zeros((0,))
|
||
|
acados_ocp.dims.nbxe_0 = 0
|
||
|
|
||
|
|
||
|
class AcadosOcpSolver:
|
||
|
"""
|
||
|
Class to interact with the acados ocp solver C object.
|
||
|
|
||
|
:param acados_ocp: type :py:class:`~acados_template.acados_ocp.AcadosOcp` - description of the OCP for acados
|
||
|
:param json_file: name for the json file used to render the templated code - default: acados_ocp_nlp.json
|
||
|
:param simulink_opts: Options to configure Simulink S-function blocks, mainly to activate possible Inputs and Outputs
|
||
|
"""
|
||
|
if sys.platform=="win32":
|
||
|
from ctypes import wintypes
|
||
|
from ctypes import WinDLL
|
||
|
dlclose = WinDLL('kernel32', use_last_error=True).FreeLibrary
|
||
|
dlclose.argtypes = [wintypes.HMODULE]
|
||
|
else:
|
||
|
dlclose = CDLL(None).dlclose
|
||
|
dlclose.argtypes = [c_void_p]
|
||
|
|
||
|
@classmethod
|
||
|
def generate(cls, acados_ocp, json_file='acados_ocp_nlp.json', simulink_opts=None, cmake_builder: CMakeBuilder = None):
|
||
|
"""
|
||
|
Generates the code for an acados OCP solver, given the description in acados_ocp.
|
||
|
:param acados_ocp: type AcadosOcp - description of the OCP for acados
|
||
|
:param json_file: name for the json file used to render the templated code - default: `acados_ocp_nlp.json`
|
||
|
:param simulink_opts: Options to configure Simulink S-function blocks, mainly to activate possible inputs and
|
||
|
outputs; default: `None`
|
||
|
:param cmake_builder: type :py:class:`~acados_template.builders.CMakeBuilder` generate a `CMakeLists.txt` and use
|
||
|
the `CMake` pipeline instead of a `Makefile` (`CMake` seems to be the better option in conjunction with
|
||
|
`MS Visual Studio`); default: `None`
|
||
|
"""
|
||
|
model = acados_ocp.model
|
||
|
acados_ocp.code_export_directory = os.path.abspath(acados_ocp.code_export_directory)
|
||
|
|
||
|
if simulink_opts is None:
|
||
|
simulink_opts = get_simulink_default_opts()
|
||
|
|
||
|
# make dims consistent
|
||
|
make_ocp_dims_consistent(acados_ocp)
|
||
|
|
||
|
# module dependent post processing
|
||
|
if acados_ocp.solver_options.integrator_type == 'GNSF':
|
||
|
set_up_imported_gnsf_model(acados_ocp)
|
||
|
|
||
|
if acados_ocp.solver_options.qp_solver == 'PARTIAL_CONDENSING_QPDUNES':
|
||
|
remove_x0_elimination(acados_ocp)
|
||
|
|
||
|
# set integrator time automatically
|
||
|
acados_ocp.solver_options.Tsim = acados_ocp.solver_options.time_steps[0]
|
||
|
|
||
|
# generate external functions
|
||
|
ocp_generate_external_functions(acados_ocp, model)
|
||
|
|
||
|
# dump to json
|
||
|
ocp_formulation_json_dump(acados_ocp, simulink_opts, json_file)
|
||
|
|
||
|
# render templates
|
||
|
ocp_render_templates(acados_ocp, json_file, cmake_builder=cmake_builder)
|
||
|
acados_ocp.json_file = json_file
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def build(cls, code_export_dir, with_cython=False, cmake_builder: CMakeBuilder = None):
|
||
|
"""
|
||
|
Builds the code for an acados OCP solver, that has been generated in code_export_dir
|
||
|
:param code_export_dir: directory in which acados OCP solver has been generated, see generate()
|
||
|
:param with_cython: option indicating if the cython interface is build, default: False.
|
||
|
:param cmake_builder: type :py:class:`~acados_template.builders.CMakeBuilder` generate a `CMakeLists.txt` and use
|
||
|
the `CMake` pipeline instead of a `Makefile` (`CMake` seems to be the better option in conjunction with
|
||
|
`MS Visual Studio`); default: `None`
|
||
|
"""
|
||
|
code_export_dir = os.path.abspath(code_export_dir)
|
||
|
cwd=os.getcwd()
|
||
|
os.chdir(code_export_dir)
|
||
|
if with_cython:
|
||
|
os.system('make clean_ocp_cython')
|
||
|
os.system('make ocp_cython')
|
||
|
else:
|
||
|
if cmake_builder is not None:
|
||
|
cmake_builder.exec(code_export_dir)
|
||
|
else:
|
||
|
os.system('make clean_ocp_shared_lib')
|
||
|
os.system('make ocp_shared_lib')
|
||
|
os.chdir(cwd)
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def create_cython_solver(cls, json_file):
|
||
|
"""
|
||
|
Returns an `AcadosOcpSolverCython` object.
|
||
|
|
||
|
This is an alternative Cython based Python wrapper to the acados OCP solver in C.
|
||
|
This offers faster interaction with the solver, because getter and setter calls, which include shape checking are done in compiled C code.
|
||
|
|
||
|
The default wrapper `AcadosOcpSolver` is based on ctypes.
|
||
|
"""
|
||
|
with open(json_file, 'r') as f:
|
||
|
acados_ocp_json = json.load(f)
|
||
|
code_export_directory = acados_ocp_json['code_export_directory']
|
||
|
|
||
|
importlib.invalidate_caches()
|
||
|
rel_code_export_directory = os.path.relpath(code_export_directory)
|
||
|
acados_ocp_solver_pyx = importlib.import_module(f'{rel_code_export_directory}.acados_ocp_solver_pyx')
|
||
|
|
||
|
AcadosOcpSolverCython = getattr(acados_ocp_solver_pyx, 'AcadosOcpSolverCython')
|
||
|
return AcadosOcpSolverCython(acados_ocp_json['model']['name'],
|
||
|
acados_ocp_json['solver_options']['nlp_solver_type'],
|
||
|
acados_ocp_json['dims']['N'])
|
||
|
|
||
|
|
||
|
def __init__(self, acados_ocp, json_file='acados_ocp_nlp.json', simulink_opts=None, build=True, generate=True, cmake_builder: CMakeBuilder = None):
|
||
|
|
||
|
self.solver_created = False
|
||
|
if generate:
|
||
|
self.generate(acados_ocp, json_file=json_file, simulink_opts=simulink_opts, cmake_builder=cmake_builder)
|
||
|
|
||
|
# load json, store options in object
|
||
|
with open(json_file, 'r') as f:
|
||
|
acados_ocp_json = json.load(f)
|
||
|
self.N = acados_ocp_json['dims']['N']
|
||
|
self.model_name = acados_ocp_json['model']['name']
|
||
|
self.solver_options = acados_ocp_json['solver_options']
|
||
|
|
||
|
acados_lib_path = acados_ocp_json['acados_lib_path']
|
||
|
code_export_directory = acados_ocp_json['code_export_directory']
|
||
|
|
||
|
if build:
|
||
|
self.build(code_export_directory, with_cython=False, cmake_builder=cmake_builder)
|
||
|
|
||
|
# prepare library loading
|
||
|
lib_prefix = 'lib'
|
||
|
lib_ext = '.so'
|
||
|
if os.name == 'nt':
|
||
|
lib_prefix = ''
|
||
|
lib_ext = ''
|
||
|
# ToDo: check for mac
|
||
|
|
||
|
# Load acados library to avoid unloading the library.
|
||
|
# This is necessary if acados was compiled with OpenMP, since the OpenMP threads can't be destroyed.
|
||
|
# Unloading a library which uses OpenMP results in a segfault (on any platform?).
|
||
|
# see [https://stackoverflow.com/questions/34439956/vc-crash-when-freeing-a-dll-built-with-openmp]
|
||
|
# or [https://python.hotexamples.com/examples/_ctypes/-/dlclose/python-dlclose-function-examples.html]
|
||
|
libacados_name = f'{lib_prefix}acados{lib_ext}'
|
||
|
libacados_filepath = os.path.join(acados_lib_path, libacados_name)
|
||
|
self.__acados_lib = CDLL(libacados_filepath)
|
||
|
# find out if acados was compiled with OpenMP
|
||
|
try:
|
||
|
self.__acados_lib_uses_omp = getattr(self.__acados_lib, 'omp_get_thread_num') is not None
|
||
|
except AttributeError as e:
|
||
|
self.__acados_lib_uses_omp = False
|
||
|
if self.__acados_lib_uses_omp:
|
||
|
print('acados was compiled with OpenMP.')
|
||
|
else:
|
||
|
print('acados was compiled without OpenMP.')
|
||
|
libacados_ocp_solver_name = f'{lib_prefix}acados_ocp_solver_{self.model_name}{lib_ext}'
|
||
|
self.shared_lib_name = os.path.join(code_export_directory, libacados_ocp_solver_name)
|
||
|
|
||
|
# get shared_lib
|
||
|
self.shared_lib = CDLL(self.shared_lib_name)
|
||
|
|
||
|
# create capsule
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_create_capsule").restype = c_void_p
|
||
|
self.capsule = getattr(self.shared_lib, f"{self.model_name}_acados_create_capsule")()
|
||
|
|
||
|
# create solver
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_create").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_create").restype = c_int
|
||
|
assert getattr(self.shared_lib, f"{self.model_name}_acados_create")(self.capsule)==0
|
||
|
self.solver_created = True
|
||
|
|
||
|
# get pointers solver
|
||
|
self.__get_pointers_solver()
|
||
|
|
||
|
self.status = 0
|
||
|
|
||
|
|
||
|
def __get_pointers_solver(self):
|
||
|
"""
|
||
|
Private function to get the pointers for solver
|
||
|
"""
|
||
|
# get pointers solver
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_opts").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_opts").restype = c_void_p
|
||
|
self.nlp_opts = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_opts")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_dims").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_dims").restype = c_void_p
|
||
|
self.nlp_dims = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_dims")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_config").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_config").restype = c_void_p
|
||
|
self.nlp_config = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_config")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_out").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_out").restype = c_void_p
|
||
|
self.nlp_out = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_out")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_sens_out").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_sens_out").restype = c_void_p
|
||
|
self.sens_out = getattr(self.shared_lib, f"{self.model_name}_acados_get_sens_out")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_in").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_in").restype = c_void_p
|
||
|
self.nlp_in = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_in")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_solver").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_solver").restype = c_void_p
|
||
|
self.nlp_solver = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_solver")(self.capsule)
|
||
|
|
||
|
|
||
|
def solve(self):
|
||
|
"""
|
||
|
Solve the ocp with current input.
|
||
|
"""
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_solve").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_solve").restype = c_int
|
||
|
self.status = getattr(self.shared_lib, f"{self.model_name}_acados_solve")(self.capsule)
|
||
|
|
||
|
return self.status
|
||
|
|
||
|
|
||
|
def reset(self):
|
||
|
"""
|
||
|
Sets current iterate to all zeros.
|
||
|
"""
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_reset").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_reset").restype = c_int
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_reset")(self.capsule)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def set_new_time_steps(self, new_time_steps):
|
||
|
"""
|
||
|
Set new time steps.
|
||
|
Recreates the solver if N changes.
|
||
|
|
||
|
:param new_time_steps: 1 dimensional np array of new time steps for the solver
|
||
|
|
||
|
.. note:: This allows for different use-cases: either set a new size of time_steps or a new distribution of
|
||
|
the shooting nodes without changing the number, e.g., to reach a different final time. Both cases
|
||
|
do not require a new code export and compilation.
|
||
|
"""
|
||
|
|
||
|
# unlikely but still possible
|
||
|
if not self.solver_created:
|
||
|
raise Exception('Solver was not yet created!')
|
||
|
|
||
|
# check if time steps really changed in value
|
||
|
if np.array_equal(self.solver_options['time_steps'], new_time_steps):
|
||
|
return
|
||
|
|
||
|
N = new_time_steps.size
|
||
|
new_time_steps_data = cast(new_time_steps.ctypes.data, POINTER(c_double))
|
||
|
|
||
|
# check if recreation of acados is necessary (no need to recreate acados if sizes are identical)
|
||
|
if len(self.solver_options['time_steps']) == N:
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_update_time_steps").argtypes = [c_void_p, c_int, c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_update_time_steps").restype = c_int
|
||
|
assert getattr(self.shared_lib, f"{self.model_name}_acados_update_time_steps")(self.capsule, N, new_time_steps_data) == 0
|
||
|
else: # recreate the solver with the new time steps
|
||
|
self.solver_created = False
|
||
|
|
||
|
# delete old memory (analog to __del__)
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free").restype = c_int
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free")(self.capsule)
|
||
|
|
||
|
# create solver with new time steps
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_create_with_discretization").argtypes = [c_void_p, c_int, c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_create_with_discretization").restype = c_int
|
||
|
assert getattr(self.shared_lib, f"{self.model_name}_acados_create_with_discretization")(self.capsule, N, new_time_steps_data) == 0
|
||
|
|
||
|
self.solver_created = True
|
||
|
|
||
|
# get pointers solver
|
||
|
self.__get_pointers_solver()
|
||
|
|
||
|
# store time_steps, N
|
||
|
self.solver_options['time_steps'] = new_time_steps
|
||
|
self.N = N
|
||
|
self.solver_options['Tsim'] = self.solver_options['time_steps'][0]
|
||
|
|
||
|
|
||
|
def update_qp_solver_cond_N(self, qp_solver_cond_N: int):
|
||
|
"""
|
||
|
Recreate solver with new value `qp_solver_cond_N` with a partial condensing QP solver.
|
||
|
This function is relevant for code reuse, i.e., if either `set_new_time_steps(...)` is used or
|
||
|
the influence of a different `qp_solver_cond_N` is studied without code export and compilation.
|
||
|
:param qp_solver_cond_N: new number of condensing stages for the solver
|
||
|
|
||
|
.. note:: This function can only be used in combination with a partial condensing QP solver.
|
||
|
|
||
|
.. note:: After `set_new_time_steps(...)` is used and depending on the new number of time steps it might be
|
||
|
necessary to change `qp_solver_cond_N` as well (using this function), i.e., typically
|
||
|
`qp_solver_cond_N < N`.
|
||
|
"""
|
||
|
# unlikely but still possible
|
||
|
if not self.solver_created:
|
||
|
raise Exception('Solver was not yet created!')
|
||
|
if self.N < qp_solver_cond_N:
|
||
|
raise Exception('Setting qp_solver_cond_N to be larger than N does not work!')
|
||
|
if self.solver_options['qp_solver_cond_N'] != qp_solver_cond_N:
|
||
|
self.solver_created = False
|
||
|
|
||
|
# recreate the solver
|
||
|
fun_name = f'{self.model_name}_acados_update_qp_solver_cond_N'
|
||
|
getattr(self.shared_lib, fun_name).argtypes = [c_void_p, c_int]
|
||
|
getattr(self.shared_lib, fun_name).restype = c_int
|
||
|
assert getattr(self.shared_lib, fun_name)(self.capsule, qp_solver_cond_N) == 0
|
||
|
|
||
|
# store the new value
|
||
|
self.solver_options['qp_solver_cond_N'] = qp_solver_cond_N
|
||
|
self.solver_created = True
|
||
|
|
||
|
# get pointers solver
|
||
|
self.__get_pointers_solver()
|
||
|
|
||
|
|
||
|
def eval_param_sens(self, index, stage=0, field="ex"):
|
||
|
"""
|
||
|
Calculate the sensitivity of the curent solution with respect to the initial state component of index
|
||
|
|
||
|
:param index: integer corresponding to initial state index in range(nx)
|
||
|
"""
|
||
|
|
||
|
field_ = field
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
# checks
|
||
|
if not isinstance(index, int):
|
||
|
raise Exception('AcadosOcpSolver.eval_param_sens(): index must be Integer.')
|
||
|
|
||
|
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = [c_void_p, c_void_p, c_void_p, c_int, c_char_p]
|
||
|
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
|
||
|
nx = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, 0, "x".encode('utf-8'))
|
||
|
|
||
|
if index < 0 or index > nx:
|
||
|
raise Exception(f'AcadosOcpSolver.eval_param_sens(): index must be in [0, nx-1], got: {index}.')
|
||
|
|
||
|
# actual eval_param
|
||
|
self.shared_lib.ocp_nlp_eval_param_sens.argtypes = [c_void_p, c_char_p, c_int, c_int, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_eval_param_sens.restype = None
|
||
|
self.shared_lib.ocp_nlp_eval_param_sens(self.nlp_solver, field, stage, index, self.sens_out)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def get(self, stage_, field_):
|
||
|
"""
|
||
|
Get the last solution of the solver:
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
|
||
|
|
||
|
.. note:: regarding lam, t: \n
|
||
|
the inequalities are internally organized in the following order: \n
|
||
|
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
|
||
|
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
|
||
|
|
||
|
.. note:: pi: multipliers for dynamics equality constraints \n
|
||
|
lam: multipliers for inequalities \n
|
||
|
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
|
||
|
sl: slack variables of soft lower inequality constraints \n
|
||
|
su: slack variables of soft upper inequality constraints \n
|
||
|
"""
|
||
|
|
||
|
out_fields = ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su']
|
||
|
# mem_fields = ['sl', 'su']
|
||
|
sens_fields = ['sens_u', "sens_x"]
|
||
|
all_fields = out_fields + sens_fields
|
||
|
|
||
|
field = field_
|
||
|
|
||
|
if (field_ not in all_fields):
|
||
|
raise Exception('AcadosOcpSolver.get(): {} is an invalid argument.\
|
||
|
\n Possible values are {}. Exiting.'.format(field_, all_fields))
|
||
|
|
||
|
if not isinstance(stage_, int):
|
||
|
raise Exception('AcadosOcpSolver.get(): stage index must be Integer.')
|
||
|
|
||
|
if stage_ < 0 or stage_ > self.N:
|
||
|
raise Exception('AcadosOcpSolver.get(): stage index must be in [0, N], got: {}.'.format(stage_))
|
||
|
|
||
|
if stage_ == self.N and field_ == 'pi':
|
||
|
raise Exception('AcadosOcpSolver.get(): field {} does not exist at final stage {}.'\
|
||
|
.format(field_, stage_))
|
||
|
|
||
|
if field_ in sens_fields:
|
||
|
field = field_.replace('sens_', '')
|
||
|
|
||
|
field = field.encode('utf-8')
|
||
|
|
||
|
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p]
|
||
|
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
|
||
|
|
||
|
dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage_, field)
|
||
|
|
||
|
out = np.ascontiguousarray(np.zeros((dims,)), dtype=np.float64)
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_double))
|
||
|
|
||
|
if (field_ in out_fields):
|
||
|
self.shared_lib.ocp_nlp_out_get.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_out_get(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage_, field, out_data)
|
||
|
# elif field_ in mem_fields:
|
||
|
# self.shared_lib.ocp_nlp_get_at_stage.argtypes = \
|
||
|
# [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
# self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \
|
||
|
# self.nlp_dims, self.nlp_solver, stage_, field, out_data)
|
||
|
elif field_ in sens_fields:
|
||
|
self.shared_lib.ocp_nlp_out_get.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_out_get(self.nlp_config, \
|
||
|
self.nlp_dims, self.sens_out, stage_, field, out_data)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def print_statistics(self):
|
||
|
"""
|
||
|
prints statistics of previous solver run as a table:
|
||
|
- iter: iteration number
|
||
|
- res_stat: stationarity residual
|
||
|
- res_eq: residual wrt equality constraints (dynamics)
|
||
|
- res_ineq: residual wrt inequality constraints (constraints)
|
||
|
- res_comp: residual wrt complementarity conditions
|
||
|
- qp_stat: status of QP solver
|
||
|
- qp_iter: number of QP iterations
|
||
|
- alpha: SQP step size
|
||
|
- qp_res_stat: stationarity residual of the last QP solution
|
||
|
- qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
|
||
|
- qp_res_ineq: residual wrt inequality constraints (constraints) of the last QP solution
|
||
|
- qp_res_comp: residual wrt complementarity conditions of the last QP solution
|
||
|
"""
|
||
|
stat = self.get_stats("statistics")
|
||
|
|
||
|
if self.solver_options['nlp_solver_type'] == 'SQP':
|
||
|
print('\niter\tres_stat\tres_eq\t\tres_ineq\tres_comp\tqp_stat\tqp_iter\talpha')
|
||
|
if stat.shape[0]>8:
|
||
|
print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp')
|
||
|
for jj in range(stat.shape[1]):
|
||
|
print(f'{int(stat[0][jj]):d}\t{stat[1][jj]:e}\t{stat[2][jj]:e}\t{stat[3][jj]:e}\t' +
|
||
|
f'{stat[4][jj]:e}\t{int(stat[5][jj]):d}\t{int(stat[6][jj]):d}\t{stat[7][jj]:e}\t')
|
||
|
if stat.shape[0]>8:
|
||
|
print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \
|
||
|
stat[8][jj], stat[9][jj], stat[10][jj], stat[11][jj]))
|
||
|
print('\n')
|
||
|
elif self.solver_options['nlp_solver_type'] == 'SQP_RTI':
|
||
|
print('\niter\tqp_stat\tqp_iter')
|
||
|
if stat.shape[0]>3:
|
||
|
print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp')
|
||
|
for jj in range(stat.shape[1]):
|
||
|
print('{:d}\t{:d}\t{:d}'.format( int(stat[0][jj]), int(stat[1][jj]), int(stat[2][jj])))
|
||
|
if stat.shape[0]>3:
|
||
|
print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \
|
||
|
stat[3][jj], stat[4][jj], stat[5][jj], stat[6][jj]))
|
||
|
print('\n')
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def store_iterate(self, filename='', overwrite=False):
|
||
|
"""
|
||
|
Stores the current iterate of the ocp solver in a json file.
|
||
|
|
||
|
:param filename: if not set, use model_name + timestamp + '.json'
|
||
|
:param overwrite: if false and filename exists add timestamp to filename
|
||
|
"""
|
||
|
if filename == '':
|
||
|
filename += self.model_name + '_' + 'iterate' + '.json'
|
||
|
|
||
|
if not overwrite:
|
||
|
# append timestamp
|
||
|
if os.path.isfile(filename):
|
||
|
filename = filename[:-5]
|
||
|
filename += datetime.utcnow().strftime('%Y-%m-%d-%H:%M:%S.%f') + '.json'
|
||
|
|
||
|
# get iterate:
|
||
|
solution = dict()
|
||
|
|
||
|
for i in range(self.N+1):
|
||
|
solution['x_'+str(i)] = self.get(i,'x')
|
||
|
solution['u_'+str(i)] = self.get(i,'u')
|
||
|
solution['z_'+str(i)] = self.get(i,'z')
|
||
|
solution['lam_'+str(i)] = self.get(i,'lam')
|
||
|
solution['t_'+str(i)] = self.get(i, 't')
|
||
|
solution['sl_'+str(i)] = self.get(i, 'sl')
|
||
|
solution['su_'+str(i)] = self.get(i, 'su')
|
||
|
for i in range(self.N):
|
||
|
solution['pi_'+str(i)] = self.get(i,'pi')
|
||
|
|
||
|
# save
|
||
|
with open(filename, 'w') as f:
|
||
|
json.dump(solution, f, default=np_array_to_list, indent=4, sort_keys=True)
|
||
|
print("stored current iterate in ", os.path.join(os.getcwd(), filename))
|
||
|
|
||
|
|
||
|
def load_iterate(self, filename):
|
||
|
"""
|
||
|
Loads the iterate stored in json file with filename into the ocp solver.
|
||
|
"""
|
||
|
if not os.path.isfile(filename):
|
||
|
raise Exception('load_iterate: failed, file does not exist: ' + os.path.join(os.getcwd(), filename))
|
||
|
|
||
|
with open(filename, 'r') as f:
|
||
|
solution = json.load(f)
|
||
|
|
||
|
print(f"loading iterate {filename}")
|
||
|
for key in solution.keys():
|
||
|
(field, stage) = key.split('_')
|
||
|
self.set(int(stage), field, np.array(solution[key]))
|
||
|
|
||
|
|
||
|
def get_stats(self, field_):
|
||
|
"""
|
||
|
Get the information of the last solver call.
|
||
|
|
||
|
:param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter', 'residuals', 'qp_iter', 'alpha']
|
||
|
|
||
|
Available fileds:
|
||
|
- time_tot: total CPU time previous call
|
||
|
- time_lin: CPU time for linearization
|
||
|
- time_sim: CPU time for integrator
|
||
|
- time_sim_ad: CPU time for integrator contribution of external function calls
|
||
|
- time_sim_la: CPU time for integrator contribution of linear algebra
|
||
|
- time_qp: CPU time qp solution
|
||
|
- time_qp_solver_call: CPU time inside qp solver (without converting the QP)
|
||
|
- time_qp_xcond: time_glob: CPU time globalization
|
||
|
- time_solution_sensitivities: CPU time for previous call to eval_param_sens
|
||
|
- time_reg: CPU time regularization
|
||
|
- sqp_iter: number of SQP iterations
|
||
|
- qp_iter: vector of QP iterations for last SQP call
|
||
|
- statistics: table with info about last iteration
|
||
|
- stat_m: number of rows in statistics matrix
|
||
|
- stat_n: number of columns in statistics matrix
|
||
|
- residuals: residuals of last iterate
|
||
|
- alpha: step sizes of SQP iterations
|
||
|
"""
|
||
|
|
||
|
double_fields = ['time_tot',
|
||
|
'time_lin',
|
||
|
'time_sim',
|
||
|
'time_sim_ad',
|
||
|
'time_sim_la',
|
||
|
'time_qp',
|
||
|
'time_qp_solver_call',
|
||
|
'time_qp_xcond',
|
||
|
'time_glob',
|
||
|
'time_solution_sensitivities',
|
||
|
'time_reg'
|
||
|
]
|
||
|
fields = double_fields + [
|
||
|
'sqp_iter',
|
||
|
'qp_iter',
|
||
|
'statistics',
|
||
|
'stat_m',
|
||
|
'stat_n',
|
||
|
'residuals',
|
||
|
'alpha',
|
||
|
]
|
||
|
field = field_.encode('utf-8')
|
||
|
|
||
|
|
||
|
if field_ in ['sqp_iter', 'stat_m', 'stat_n']:
|
||
|
out = np.ascontiguousarray(np.zeros((1,)), dtype=np.int64)
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_int64))
|
||
|
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
return out
|
||
|
|
||
|
# TODO: just return double instead of np.
|
||
|
elif field_ in double_fields:
|
||
|
out = np.zeros((1,))
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_double))
|
||
|
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
return out
|
||
|
|
||
|
elif field_ == 'statistics':
|
||
|
sqp_iter = self.get_stats("sqp_iter")
|
||
|
stat_m = self.get_stats("stat_m")
|
||
|
stat_n = self.get_stats("stat_n")
|
||
|
min_size = min([stat_m, sqp_iter+1])
|
||
|
out = np.ascontiguousarray(
|
||
|
np.zeros((stat_n[0]+1, min_size[0])), dtype=np.float64)
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_double))
|
||
|
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
return out
|
||
|
|
||
|
elif field_ == 'qp_iter':
|
||
|
full_stats = self.get_stats('statistics')
|
||
|
if self.solver_options['nlp_solver_type'] == 'SQP':
|
||
|
return full_stats[6, :]
|
||
|
elif self.solver_options['nlp_solver_type'] == 'SQP_RTI':
|
||
|
return full_stats[2, :]
|
||
|
|
||
|
elif field_ == 'alpha':
|
||
|
full_stats = self.get_stats('statistics')
|
||
|
if self.solver_options['nlp_solver_type'] == 'SQP':
|
||
|
return full_stats[7, :]
|
||
|
else: # self.solver_options['nlp_solver_type'] == 'SQP_RTI':
|
||
|
raise Exception("alpha values are not available for SQP_RTI")
|
||
|
|
||
|
elif field_ == 'residuals':
|
||
|
return self.get_residuals()
|
||
|
|
||
|
else:
|
||
|
raise Exception(f'AcadosOcpSolver.get_stats(): {field} is not a valid argument.'
|
||
|
+ f'\n Possible values are {fields}.')
|
||
|
|
||
|
|
||
|
def get_cost(self):
|
||
|
"""
|
||
|
Returns the cost value of the current solution.
|
||
|
"""
|
||
|
# compute cost internally
|
||
|
self.shared_lib.ocp_nlp_eval_cost.argtypes = [c_void_p, c_void_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
|
||
|
|
||
|
# create output array
|
||
|
out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64)
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_double))
|
||
|
|
||
|
# call getter
|
||
|
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
|
||
|
|
||
|
field = "cost_value".encode('utf-8')
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
|
||
|
return out[0]
|
||
|
|
||
|
|
||
|
def get_residuals(self, recompute=False):
|
||
|
"""
|
||
|
Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
|
||
|
"""
|
||
|
# compute residuals if RTI
|
||
|
if self.solver_options['nlp_solver_type'] == 'SQP_RTI' or recompute:
|
||
|
self.shared_lib.ocp_nlp_eval_residuals.argtypes = [c_void_p, c_void_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_eval_residuals(self.nlp_solver, self.nlp_in, self.nlp_out)
|
||
|
|
||
|
# create output array
|
||
|
out = np.ascontiguousarray(np.zeros((4, 1)), dtype=np.float64)
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_double))
|
||
|
|
||
|
# call getters
|
||
|
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
|
||
|
|
||
|
field = "res_stat".encode('utf-8')
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
|
||
|
out_data = cast(out[1].ctypes.data, POINTER(c_double))
|
||
|
field = "res_eq".encode('utf-8')
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
|
||
|
out_data = cast(out[2].ctypes.data, POINTER(c_double))
|
||
|
field = "res_ineq".encode('utf-8')
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
|
||
|
out_data = cast(out[3].ctypes.data, POINTER(c_double))
|
||
|
field = "res_comp".encode('utf-8')
|
||
|
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
|
||
|
return out.flatten()
|
||
|
|
||
|
|
||
|
# Note: this function should not be used anymore, better use cost_set, constraints_set
|
||
|
def set(self, stage_, field_, value_):
|
||
|
"""
|
||
|
Set numerical data inside the solver.
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string in ['x', 'u', 'pi', 'lam', 't', 'p', 'xdot_guess', 'z_guess']
|
||
|
|
||
|
.. note:: regarding lam, t: \n
|
||
|
the inequalities are internally organized in the following order: \n
|
||
|
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
|
||
|
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
|
||
|
|
||
|
.. note:: pi: multipliers for dynamics equality constraints \n
|
||
|
lam: multipliers for inequalities \n
|
||
|
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
|
||
|
sl: slack variables of soft lower inequality constraints \n
|
||
|
su: slack variables of soft upper inequality constraints \n
|
||
|
"""
|
||
|
cost_fields = ['y_ref', 'yref']
|
||
|
constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
|
||
|
out_fields = ['x', 'u', 'pi', 'lam', 't', 'z', 'sl', 'su']
|
||
|
mem_fields = ['xdot_guess', 'z_guess']
|
||
|
|
||
|
# cast value_ to avoid conversion issues
|
||
|
if isinstance(value_, (float, int)):
|
||
|
value_ = np.array([value_])
|
||
|
value_ = value_.astype(float)
|
||
|
|
||
|
field = field_
|
||
|
field = field.encode('utf-8')
|
||
|
|
||
|
stage = c_int(stage_)
|
||
|
|
||
|
# treat parameters separately
|
||
|
if field_ == 'p':
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_update_params").argtypes = [c_void_p, c_int, POINTER(c_double)]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_update_params").restype = c_int
|
||
|
|
||
|
value_data = cast(value_.ctypes.data, POINTER(c_double))
|
||
|
|
||
|
assert getattr(self.shared_lib, f"{self.model_name}_acados_update_params")(self.capsule, stage, value_data, value_.shape[0])==0
|
||
|
else:
|
||
|
if field_ not in constraints_fields + cost_fields + out_fields:
|
||
|
raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\
|
||
|
\nPossible values are {}. Exiting.".format(field, \
|
||
|
constraints_fields + cost_fields + out_fields + ['p']))
|
||
|
|
||
|
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p]
|
||
|
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
|
||
|
|
||
|
dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage_, field)
|
||
|
|
||
|
if value_.shape[0] != dims:
|
||
|
msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_)
|
||
|
msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0])
|
||
|
raise Exception(msg)
|
||
|
|
||
|
value_data = cast(value_.ctypes.data, POINTER(c_double))
|
||
|
value_data_p = cast((value_data), c_void_p)
|
||
|
|
||
|
if field_ in constraints_fields:
|
||
|
self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
|
||
|
elif field_ in cost_fields:
|
||
|
self.shared_lib.ocp_nlp_cost_model_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
|
||
|
elif field_ in out_fields:
|
||
|
self.shared_lib.ocp_nlp_out_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_out_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage, field, value_data_p)
|
||
|
elif field_ in mem_fields:
|
||
|
self.shared_lib.ocp_nlp_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_set(self.nlp_config, \
|
||
|
self.nlp_solver, stage, field, value_data_p)
|
||
|
return
|
||
|
|
||
|
|
||
|
def cost_set(self, stage_, field_, value_, api='warn'):
|
||
|
"""
|
||
|
Set numerical data in the cost module of the solver.
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
|
||
|
:param value: of appropriate size
|
||
|
"""
|
||
|
# cast value_ to avoid conversion issues
|
||
|
if isinstance(value_, (float, int)):
|
||
|
value_ = np.array([value_])
|
||
|
value_ = value_.astype(float)
|
||
|
|
||
|
field = field_
|
||
|
field = field.encode('utf-8')
|
||
|
|
||
|
stage = c_int(stage_)
|
||
|
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
|
||
|
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.restype = c_int
|
||
|
|
||
|
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
|
||
|
dims_data = cast(dims.ctypes.data, POINTER(c_int))
|
||
|
|
||
|
self.shared_lib.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage_, field, dims_data)
|
||
|
|
||
|
value_shape = value_.shape
|
||
|
if len(value_shape) == 1:
|
||
|
value_shape = (value_shape[0], 0)
|
||
|
|
||
|
elif len(value_shape) == 2:
|
||
|
if api=='old':
|
||
|
pass
|
||
|
elif api=='warn':
|
||
|
if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')):
|
||
|
raise Exception("Ambiguity in API detected.\n"
|
||
|
"Are you making an acados model from scrach? Add api='new' to cost_set and carry on.\n"
|
||
|
"Are you seeing this error suddenly in previously running code? Read on.\n"
|
||
|
" You are relying on a now-fixed bug in cost_set for field '{}'.\n".format(field_) +
|
||
|
" acados_template now correctly passes on any matrices to acados in column major format.\n" +
|
||
|
" Two options to fix this error: \n" +
|
||
|
" * Add api='old' to cost_set to restore old incorrect behaviour\n" +
|
||
|
" * Add api='new' to cost_set and remove any unnatural manipulation of the value argument " +
|
||
|
"such as non-mathematical transposes, reshaping, casting to fortran order, etc... " +
|
||
|
"If there is no such manipulation, then you have probably been getting an incorrect solution before.")
|
||
|
# Get elements in column major order
|
||
|
value_ = np.ravel(value_, order='F')
|
||
|
elif api=='new':
|
||
|
# Get elements in column major order
|
||
|
value_ = np.ravel(value_, order='F')
|
||
|
else:
|
||
|
raise Exception("Unknown api: '{}'".format(api))
|
||
|
|
||
|
if value_shape != tuple(dims):
|
||
|
raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension' +
|
||
|
f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
|
||
|
|
||
|
value_data = cast(value_.ctypes.data, POINTER(c_double))
|
||
|
value_data_p = cast((value_data), c_void_p)
|
||
|
|
||
|
self.shared_lib.ocp_nlp_cost_model_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def constraints_set(self, stage_, field_, value_, api='warn'):
|
||
|
"""
|
||
|
Set numerical data in the constraint module of the solver.
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi', 'C', 'D']
|
||
|
:param value: of appropriate size
|
||
|
"""
|
||
|
# cast value_ to avoid conversion issues
|
||
|
if isinstance(value_, (float, int)):
|
||
|
value_ = np.array([value_])
|
||
|
value_ = value_.astype(float)
|
||
|
|
||
|
field = field_
|
||
|
field = field.encode('utf-8')
|
||
|
|
||
|
stage = c_int(stage_)
|
||
|
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
|
||
|
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.restype = c_int
|
||
|
|
||
|
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
|
||
|
dims_data = cast(dims.ctypes.data, POINTER(c_int))
|
||
|
|
||
|
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage_, field, dims_data)
|
||
|
|
||
|
value_shape = value_.shape
|
||
|
if len(value_shape) == 1:
|
||
|
value_shape = (value_shape[0], 0)
|
||
|
elif len(value_shape) == 2:
|
||
|
if api=='old':
|
||
|
pass
|
||
|
elif api=='warn':
|
||
|
if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')):
|
||
|
raise Exception("Ambiguity in API detected.\n"
|
||
|
"Are you making an acados model from scrach? Add api='new' to constraints_set and carry on.\n"
|
||
|
"Are you seeing this error suddenly in previously running code? Read on.\n"
|
||
|
" You are relying on a now-fixed bug in constraints_set for field '{}'.\n".format(field_) +
|
||
|
" acados_template now correctly passes on any matrices to acados in column major format.\n" +
|
||
|
" Two options to fix this error: \n" +
|
||
|
" * Add api='old' to constraints_set to restore old incorrect behaviour\n" +
|
||
|
" * Add api='new' to constraints_set and remove any unnatural manipulation of the value argument " +
|
||
|
"such as non-mathematical transposes, reshaping, casting to fortran order, etc... " +
|
||
|
"If there is no such manipulation, then you have probably been getting an incorrect solution before.")
|
||
|
# Get elements in column major order
|
||
|
value_ = np.ravel(value_, order='F')
|
||
|
elif api=='new':
|
||
|
# Get elements in column major order
|
||
|
value_ = np.ravel(value_, order='F')
|
||
|
else:
|
||
|
raise Exception("Unknown api: '{}'".format(api))
|
||
|
|
||
|
if value_shape != tuple(dims):
|
||
|
raise Exception(f'AcadosOcpSolver.constraints_set(): mismatching dimension' +
|
||
|
f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
|
||
|
|
||
|
value_data = cast(value_.ctypes.data, POINTER(c_double))
|
||
|
value_data_p = cast((value_data), c_void_p)
|
||
|
|
||
|
self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def dynamics_get(self, stage_, field_):
|
||
|
"""
|
||
|
Get numerical data from the dynamics module of the solver:
|
||
|
|
||
|
:param stage: integer corresponding to shooting node
|
||
|
:param field: string, e.g. 'A'
|
||
|
"""
|
||
|
|
||
|
field = field_
|
||
|
field = field.encode('utf-8')
|
||
|
stage = c_int(stage_)
|
||
|
|
||
|
# get dims
|
||
|
self.shared_lib.ocp_nlp_dynamics_dims_get_from_attr.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
|
||
|
self.shared_lib.ocp_nlp_dynamics_dims_get_from_attr.restype = c_int
|
||
|
|
||
|
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
|
||
|
dims_data = cast(dims.ctypes.data, POINTER(c_int))
|
||
|
|
||
|
self.shared_lib.ocp_nlp_dynamics_dims_get_from_attr(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_out, stage_, field, dims_data)
|
||
|
|
||
|
# create output data
|
||
|
out = np.ascontiguousarray(np.zeros((np.prod(dims),)), dtype=np.float64)
|
||
|
out = out.reshape(dims[0], dims[1], order='F')
|
||
|
|
||
|
out_data = cast(out.ctypes.data, POINTER(c_double))
|
||
|
out_data_p = cast((out_data), c_void_p)
|
||
|
|
||
|
# call getter
|
||
|
self.shared_lib.ocp_nlp_get_at_stage.argtypes = \
|
||
|
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \
|
||
|
self.nlp_dims, self.nlp_solver, stage, field, out_data_p)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def options_set(self, field_, value_):
|
||
|
"""
|
||
|
Set options of the solver.
|
||
|
|
||
|
:param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0'
|
||
|
|
||
|
:param value: of type int, float, string
|
||
|
|
||
|
- qp_tol_stat: QP solver tolerance stationarity
|
||
|
- qp_tol_eq: QP solver tolerance equalities
|
||
|
- qp_tol_ineq: QP solver tolerance inequalities
|
||
|
- qp_tol_comp: QP solver tolerance complementarity
|
||
|
- qp_tau_min: for HPIPM QP solvers: minimum value of barrier parameter in HPIPM
|
||
|
- qp_mu0: for HPIPM QP solvers: initial value for complementarity slackness
|
||
|
- warm_start_first_qp: indicates if first QP in SQP is warm_started
|
||
|
"""
|
||
|
int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'warm_start_first_qp']
|
||
|
double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction', 'eps_sufficient_descent',
|
||
|
'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0']
|
||
|
string_fields = ['globalization']
|
||
|
|
||
|
# check field availability and type
|
||
|
if field_ in int_fields:
|
||
|
if not isinstance(value_, int):
|
||
|
raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
|
||
|
else:
|
||
|
value_ctypes = c_int(value_)
|
||
|
|
||
|
elif field_ in double_fields:
|
||
|
if not isinstance(value_, float):
|
||
|
raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
|
||
|
else:
|
||
|
value_ctypes = c_double(value_)
|
||
|
|
||
|
elif field_ in string_fields:
|
||
|
if not isinstance(value_, str):
|
||
|
raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
|
||
|
else:
|
||
|
value_ctypes = value_.encode('utf-8')
|
||
|
else:
|
||
|
raise Exception('AcadosOcpSolver.options_set() does not support field {}.'\
|
||
|
'\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
|
||
|
|
||
|
|
||
|
if field_ == 'rti_phase':
|
||
|
if value_ < 0 or value_ > 2:
|
||
|
raise Exception('AcadosOcpSolver.options_set(): argument \'rti_phase\' can '
|
||
|
'take only values 0, 1, 2 for SQP-RTI-type solvers')
|
||
|
if self.solver_options['nlp_solver_type'] != 'SQP_RTI' and value_ > 0:
|
||
|
raise Exception('AcadosOcpSolver.options_set(): argument \'rti_phase\' can '
|
||
|
'take only value 0 for SQP-type solvers')
|
||
|
|
||
|
# encode
|
||
|
field = field_
|
||
|
field = field.encode('utf-8')
|
||
|
|
||
|
# call C interface
|
||
|
if field_ in string_fields:
|
||
|
self.shared_lib.ocp_nlp_solver_opts_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_char_p, c_char_p]
|
||
|
self.shared_lib.ocp_nlp_solver_opts_set(self.nlp_config, \
|
||
|
self.nlp_opts, field, value_ctypes)
|
||
|
else:
|
||
|
self.shared_lib.ocp_nlp_solver_opts_set.argtypes = \
|
||
|
[c_void_p, c_void_p, c_char_p, c_void_p]
|
||
|
self.shared_lib.ocp_nlp_solver_opts_set(self.nlp_config, \
|
||
|
self.nlp_opts, field, byref(value_ctypes))
|
||
|
return
|
||
|
|
||
|
|
||
|
def __del__(self):
|
||
|
if self.solver_created:
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free").restype = c_int
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free")(self.capsule)
|
||
|
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free_capsule").argtypes = [c_void_p]
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free_capsule").restype = c_int
|
||
|
getattr(self.shared_lib, f"{self.model_name}_acados_free_capsule")(self.capsule)
|
||
|
|
||
|
try:
|
||
|
self.dlclose(self.shared_lib._handle)
|
||
|
except:
|
||
|
pass
|