You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					217 lines
				
				7.6 KiB
			
		
		
			
		
	
	
					217 lines
				
				7.6 KiB
			| 
											6 years ago
										 | // This file is part of Eigen, a lightweight C++ template library
 | ||
|  | // for linear algebra.
 | ||
|  | //
 | ||
|  | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
 | ||
|  | //
 | ||
|  | // This Source Code Form is subject to the terms of the Mozilla
 | ||
|  | // Public License v. 2.0. If a copy of the MPL was not distributed
 | ||
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | ||
|  | 
 | ||
|  | #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
 | ||
|  | #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
 | ||
|  | 
 | ||
|  | namespace Eigen { 
 | ||
|  | 
 | ||
|  | namespace internal {
 | ||
|  | 
 | ||
|  | /** \internal Low-level conjugate gradient algorithm for least-square problems
 | ||
|  |   * \param mat The matrix A
 | ||
|  |   * \param rhs The right hand side vector b
 | ||
|  |   * \param x On input and initial solution, on output the computed solution.
 | ||
|  |   * \param precond A preconditioner being able to efficiently solve for an
 | ||
|  |   *                approximation of A'Ax=b (regardless of b)
 | ||
|  |   * \param iters On input the max number of iteration, on output the number of performed iterations.
 | ||
|  |   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
 | ||
|  |   */
 | ||
|  | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
 | ||
|  | EIGEN_DONT_INLINE
 | ||
|  | void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
 | ||
|  |                                      const Preconditioner& precond, Index& iters,
 | ||
|  |                                      typename Dest::RealScalar& tol_error)
 | ||
|  | {
 | ||
|  |   using std::sqrt;
 | ||
|  |   using std::abs;
 | ||
|  |   typedef typename Dest::RealScalar RealScalar;
 | ||
|  |   typedef typename Dest::Scalar Scalar;
 | ||
|  |   typedef Matrix<Scalar,Dynamic,1> VectorType;
 | ||
|  |   
 | ||
|  |   RealScalar tol = tol_error;
 | ||
|  |   Index maxIters = iters;
 | ||
|  |   
 | ||
|  |   Index m = mat.rows(), n = mat.cols();
 | ||
|  | 
 | ||
|  |   VectorType residual        = rhs - mat * x;
 | ||
|  |   VectorType normal_residual = mat.adjoint() * residual;
 | ||
|  | 
 | ||
|  |   RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
 | ||
|  |   if(rhsNorm2 == 0) 
 | ||
|  |   {
 | ||
|  |     x.setZero();
 | ||
|  |     iters = 0;
 | ||
|  |     tol_error = 0;
 | ||
|  |     return;
 | ||
|  |   }
 | ||
|  |   RealScalar threshold = tol*tol*rhsNorm2;
 | ||
|  |   RealScalar residualNorm2 = normal_residual.squaredNorm();
 | ||
|  |   if (residualNorm2 < threshold)
 | ||
|  |   {
 | ||
|  |     iters = 0;
 | ||
|  |     tol_error = sqrt(residualNorm2 / rhsNorm2);
 | ||
|  |     return;
 | ||
|  |   }
 | ||
|  |   
 | ||
|  |   VectorType p(n);
 | ||
|  |   p = precond.solve(normal_residual);                         // initial search direction
 | ||
|  | 
 | ||
|  |   VectorType z(n), tmp(m);
 | ||
|  |   RealScalar absNew = numext::real(normal_residual.dot(p));  // the square of the absolute value of r scaled by invM
 | ||
|  |   Index i = 0;
 | ||
|  |   while(i < maxIters)
 | ||
|  |   {
 | ||
|  |     tmp.noalias() = mat * p;
 | ||
|  | 
 | ||
|  |     Scalar alpha = absNew / tmp.squaredNorm();      // the amount we travel on dir
 | ||
|  |     x += alpha * p;                                 // update solution
 | ||
|  |     residual -= alpha * tmp;                        // update residual
 | ||
|  |     normal_residual = mat.adjoint() * residual;     // update residual of the normal equation
 | ||
|  |     
 | ||
|  |     residualNorm2 = normal_residual.squaredNorm();
 | ||
|  |     if(residualNorm2 < threshold)
 | ||
|  |       break;
 | ||
|  |     
 | ||
|  |     z = precond.solve(normal_residual);             // approximately solve for "A'A z = normal_residual"
 | ||
|  | 
 | ||
|  |     RealScalar absOld = absNew;
 | ||
|  |     absNew = numext::real(normal_residual.dot(z));  // update the absolute value of r
 | ||
|  |     RealScalar beta = absNew / absOld;              // calculate the Gram-Schmidt value used to create the new search direction
 | ||
|  |     p = z + beta * p;                               // update search direction
 | ||
|  |     i++;
 | ||
|  |   }
 | ||
|  |   tol_error = sqrt(residualNorm2 / rhsNorm2);
 | ||
|  |   iters = i;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template< typename _MatrixType,
 | ||
|  |           typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
 | ||
|  | class LeastSquaresConjugateGradient;
 | ||
|  | 
 | ||
|  | namespace internal {
 | ||
|  | 
 | ||
|  | template< typename _MatrixType, typename _Preconditioner>
 | ||
|  | struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
 | ||
|  | {
 | ||
|  |   typedef _MatrixType MatrixType;
 | ||
|  |   typedef _Preconditioner Preconditioner;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | }
 | ||
|  | 
 | ||
|  | /** \ingroup IterativeLinearSolvers_Module
 | ||
|  |   * \brief A conjugate gradient solver for sparse (or dense) least-square problems
 | ||
|  |   *
 | ||
|  |   * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
 | ||
|  |   * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
 | ||
|  |   * Otherwise, the SparseLU or SparseQR classes might be preferable.
 | ||
|  |   * The matrix A and the vectors x and b can be either dense or sparse.
 | ||
|  |   *
 | ||
|  |   * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
 | ||
|  |   * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
 | ||
|  |   *
 | ||
|  |   * \implsparsesolverconcept
 | ||
|  |   * 
 | ||
|  |   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
 | ||
|  |   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
 | ||
|  |   * and NumTraits<Scalar>::epsilon() for the tolerance.
 | ||
|  |   * 
 | ||
|  |   * This class can be used as the direct solver classes. Here is a typical usage example:
 | ||
|  |     \code
 | ||
|  |     int m=1000000, n = 10000;
 | ||
|  |     VectorXd x(n), b(m);
 | ||
|  |     SparseMatrix<double> A(m,n);
 | ||
|  |     // fill A and b
 | ||
|  |     LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
 | ||
|  |     lscg.compute(A);
 | ||
|  |     x = lscg.solve(b);
 | ||
|  |     std::cout << "#iterations:     " << lscg.iterations() << std::endl;
 | ||
|  |     std::cout << "estimated error: " << lscg.error()      << std::endl;
 | ||
|  |     // update b, and solve again
 | ||
|  |     x = lscg.solve(b);
 | ||
|  |     \endcode
 | ||
|  |   * 
 | ||
|  |   * By default the iterations start with x=0 as an initial guess of the solution.
 | ||
|  |   * One can control the start using the solveWithGuess() method.
 | ||
|  |   * 
 | ||
|  |   * \sa class ConjugateGradient, SparseLU, SparseQR
 | ||
|  |   */
 | ||
|  | template< typename _MatrixType, typename _Preconditioner>
 | ||
|  | class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
 | ||
|  | {
 | ||
|  |   typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
 | ||
|  |   using Base::matrix;
 | ||
|  |   using Base::m_error;
 | ||
|  |   using Base::m_iterations;
 | ||
|  |   using Base::m_info;
 | ||
|  |   using Base::m_isInitialized;
 | ||
|  | public:
 | ||
|  |   typedef _MatrixType MatrixType;
 | ||
|  |   typedef typename MatrixType::Scalar Scalar;
 | ||
|  |   typedef typename MatrixType::RealScalar RealScalar;
 | ||
|  |   typedef _Preconditioner Preconditioner;
 | ||
|  | 
 | ||
|  | public:
 | ||
|  | 
 | ||
|  |   /** Default constructor. */
 | ||
|  |   LeastSquaresConjugateGradient() : Base() {}
 | ||
|  | 
 | ||
|  |   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
 | ||
|  |     * 
 | ||
|  |     * This constructor is a shortcut for the default constructor followed
 | ||
|  |     * by a call to compute().
 | ||
|  |     * 
 | ||
|  |     * \warning this class stores a reference to the matrix A as well as some
 | ||
|  |     * precomputed values that depend on it. Therefore, if \a A is changed
 | ||
|  |     * this class becomes invalid. Call compute() to update it with the new
 | ||
|  |     * matrix A, or modify a copy of A.
 | ||
|  |     */
 | ||
|  |   template<typename MatrixDerived>
 | ||
|  |   explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
 | ||
|  | 
 | ||
|  |   ~LeastSquaresConjugateGradient() {}
 | ||
|  | 
 | ||
|  |   /** \internal */
 | ||
|  |   template<typename Rhs,typename Dest>
 | ||
|  |   void _solve_with_guess_impl(const Rhs& b, Dest& x) const
 | ||
|  |   {
 | ||
|  |     m_iterations = Base::maxIterations();
 | ||
|  |     m_error = Base::m_tolerance;
 | ||
|  | 
 | ||
|  |     for(Index j=0; j<b.cols(); ++j)
 | ||
|  |     {
 | ||
|  |       m_iterations = Base::maxIterations();
 | ||
|  |       m_error = Base::m_tolerance;
 | ||
|  | 
 | ||
|  |       typename Dest::ColXpr xj(x,j);
 | ||
|  |       internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     m_isInitialized = true;
 | ||
|  |     m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
 | ||
|  |   }
 | ||
|  |   
 | ||
|  |   /** \internal */
 | ||
|  |   using Base::_solve_impl;
 | ||
|  |   template<typename Rhs,typename Dest>
 | ||
|  |   void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
 | ||
|  |   {
 | ||
|  |     x.setZero();
 | ||
|  |     _solve_with_guess_impl(b.derived(),x);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | };
 | ||
|  | 
 | ||
|  | } // end namespace Eigen
 | ||
|  | 
 | ||
|  | #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
 |