openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

685 lines
20 KiB

#include <cstdio>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <string>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <zmq.h>
#include <capnp/serialize.h>
#include "cereal/gen/cpp/log.capnp.h"
#include "common.h"
#define DEBUG(...)
// #define DEBUG printf
#define INFO printf
#define MAX_BAD_COUNTER 5
// Static lookup table for fast computation of CRC8 poly 0x2F, aka 8H2F/AUTOSAR
uint8_t crc8_lut_8h2f[256];
unsigned int honda_checksum(unsigned int address, uint64_t d, int l) {
d >>= ((8-l)*8); // remove padding
d >>= 4; // remove checksum
int s = 0;
while (address) { s += (address & 0xF); address >>= 4; }
while (d) { s += (d & 0xF); d >>= 4; }
s = 8-s;
s &= 0xF;
return s;
}
unsigned int toyota_checksum(unsigned int address, uint64_t d, int l) {
d >>= ((8-l)*8); // remove padding
d >>= 8; // remove checksum
unsigned int s = l;
while (address) { s += address & 0xff; address >>= 8; }
while (d) { s += d & 0xff; d >>= 8; }
return s & 0xFF;
}
unsigned int pedal_checksum(unsigned int address, uint64_t d, int l) {
uint8_t crc = 0xFF;
uint8_t poly = 0xD5; // standard crc8
d >>= ((8-l)*8); // remove padding
d >>= 8; // remove checksum
uint8_t *dat = (uint8_t *)&d;
int i, j;
for (i = 0; i < l - 1; i++) {
crc ^= dat[i];
for (j = 0; j < 8; j++) {
if ((crc & 0x80) != 0) {
crc = (uint8_t)((crc << 1) ^ poly);
}
else {
crc <<= 1;
}
}
}
return crc;
}
void gen_crc_lookup_table(uint8_t poly, uint8_t crc_lut[])
{
uint8_t crc;
int i, j;
for (i = 0; i < 256; i++) {
crc = i;
for (j = 0; j < 8; j++) {
if ((crc & 0x80) != 0)
crc = (uint8_t)((crc << 1) ^ poly);
else
crc <<= 1;
}
crc_lut[i] = crc;
}
}
void init_crc_lookup_tables()
{
// At init time, set up static lookup tables for fast CRC computation.
gen_crc_lookup_table(0x2F, crc8_lut_8h2f); // CRC-8 8H2F/AUTOSAR for Volkswagen
}
unsigned int volkswagen_crc(unsigned int address, uint64_t d, int l)
{
// Volkswagen uses standard CRC8 8H2F/AUTOSAR, but they compute it with
// a magic variable padding byte tacked onto the end of the payload.
// https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_CRCLibrary.pdf
uint8_t *dat = (uint8_t *)&d;
uint8_t crc = 0xFF; // Standard init value for CRC8 8H2F/AUTOSAR
// CRC the payload first, skipping over the first byte where the CRC lives.
for (int i = 1; i < l; i++) {
crc ^= dat[i];
crc = crc8_lut_8h2f[crc];
}
// Look up and apply the magic final CRC padding byte, which permutes by CAN
// address, and additionally (for SOME addresses) by the message counter.
uint8_t counter = dat[1] & 0x0F;
switch(address) {
case 0x86: // LWI_01 Steering Angle
crc ^= (uint8_t[]){0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86,0x86}[counter];
break;
case 0x9F: // EPS_01 Electric Power Steering
crc ^= (uint8_t[]){0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5,0xF5}[counter];
break;
case 0xAD: // Getriebe_11 Automatic Gearbox
crc ^= (uint8_t[]){0x3F,0x69,0x39,0xDC,0x94,0xF9,0x14,0x64,0xD8,0x6A,0x34,0xCE,0xA2,0x55,0xB5,0x2C}[counter];
break;
case 0xFD: // ESP_21 Electronic Stability Program
crc ^= (uint8_t[]){0xB4,0xEF,0xF8,0x49,0x1E,0xE5,0xC2,0xC0,0x97,0x19,0x3C,0xC9,0xF1,0x98,0xD6,0x61}[counter];
break;
case 0x106: // ESP_05 Electronic Stability Program
crc ^= (uint8_t[]){0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07}[counter];
break;
case 0x117: // ACC_10 Automatic Cruise Control
crc ^= (uint8_t[]){0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC,0xAC}[counter];
break;
case 0x122: // ACC_06 Automatic Cruise Control
crc ^= (uint8_t[]){0x37,0x7D,0xF3,0xA9,0x18,0x46,0x6D,0x4D,0x3D,0x71,0x92,0x9C,0xE5,0x32,0x10,0xB9}[counter];
break;
case 0x126: // HCA_01 Heading Control Assist
crc ^= (uint8_t[]){0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA,0xDA}[counter];
break;
case 0x12B: // GRA_ACC_01 Steering wheel controls for ACC
crc ^= (uint8_t[]){0x6A,0x38,0xB4,0x27,0x22,0xEF,0xE1,0xBB,0xF8,0x80,0x84,0x49,0xC7,0x9E,0x1E,0x2B}[counter];
break;
case 0x187: // EV_Gearshift "Gear" selection data for EVs with no gearbox
crc ^= (uint8_t[]){0x7F,0xED,0x17,0xC2,0x7C,0xEB,0x44,0x21,0x01,0xFA,0xDB,0x15,0x4A,0x6B,0x23,0x05}[counter];
break;
case 0x30C: // ACC_02 Automatic Cruise Control
crc ^= (uint8_t[]){0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F}[counter];
break;
case 0x3C0: // Klemmen_Status_01 ignition and starting status
crc ^= (uint8_t[]){0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3,0xC3}[counter];
break;
case 0x65D: // ESP_20 Electronic Stability Program
crc ^= (uint8_t[]){0xAC,0xB3,0xAB,0xEB,0x7A,0xE1,0x3B,0xF7,0x73,0xBA,0x7C,0x9E,0x06,0x5F,0x02,0xD9}[counter];
break;
default: // As-yet undefined CAN message, CRC check expected to fail
INFO("Attempt to CRC check undefined Volkswagen message 0x%02X\n", address);
crc ^= (uint8_t[]){0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}[counter];
break;
}
crc = crc8_lut_8h2f[crc];
return crc ^ 0xFF; // Return after standard final XOR for CRC8 8H2F/AUTOSAR
}
namespace {
uint64_t read_u64_be(const uint8_t* v) {
return (((uint64_t)v[0] << 56)
| ((uint64_t)v[1] << 48)
| ((uint64_t)v[2] << 40)
| ((uint64_t)v[3] << 32)
| ((uint64_t)v[4] << 24)
| ((uint64_t)v[5] << 16)
| ((uint64_t)v[6] << 8)
| (uint64_t)v[7]);
}
uint64_t read_u64_le(const uint8_t* v) {
return ((uint64_t)v[0]
| ((uint64_t)v[1] << 8)
| ((uint64_t)v[2] << 16)
| ((uint64_t)v[3] << 24)
| ((uint64_t)v[4] << 32)
| ((uint64_t)v[5] << 40)
| ((uint64_t)v[6] << 48)
| ((uint64_t)v[7] << 56));
}
struct MessageState {
uint32_t address;
unsigned int size;
std::vector<Signal> parse_sigs;
std::vector<double> vals;
uint16_t ts;
uint64_t seen;
uint64_t check_threshold;
uint8_t counter;
uint8_t counter_fail;
bool parse(uint64_t sec, uint16_t ts_, uint64_t dat) {
for (int i=0; i < parse_sigs.size(); i++) {
auto& sig = parse_sigs[i];
int64_t tmp;
if (sig.is_little_endian){
tmp = (dat >> sig.b1) & ((1ULL << sig.b2)-1);
} else {
tmp = (dat >> sig.bo) & ((1ULL << sig.b2)-1);
}
if (sig.is_signed) {
tmp -= (tmp >> (sig.b2-1)) ? (1ULL << sig.b2) : 0; //signed
}
DEBUG("parse 0x%X %s -> %lld\n", address, sig.name, tmp);
if (sig.type == SignalType::HONDA_CHECKSUM) {
if (honda_checksum(address, dat, size) != tmp) {
INFO("0x%X CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::HONDA_COUNTER) {
if (!update_counter_generic(tmp, sig.b2)) {
return false;
}
} else if (sig.type == SignalType::TOYOTA_CHECKSUM) {
if (toyota_checksum(address, dat, size) != tmp) {
INFO("0x%X CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::VOLKSWAGEN_CHECKSUM) {
if (volkswagen_crc(address, dat, size) != tmp) {
INFO("0x%X CRC FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::VOLKSWAGEN_COUNTER) {
if (!update_counter_generic(tmp, sig.b2)) {
return false;
}
} else if (sig.type == SignalType::PEDAL_CHECKSUM) {
if (pedal_checksum(address, dat, size) != tmp) {
INFO("0x%X PEDAL CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::PEDAL_COUNTER) {
if (!update_counter_generic(tmp, sig.b2)) {
return false;
}
}
vals[i] = tmp * sig.factor + sig.offset;
}
ts = ts_;
seen = sec;
return true;
}
bool update_counter_generic(int64_t v, int cnt_size) {
uint8_t old_counter = counter;
counter = v;
if (((old_counter+1) & ((1 << cnt_size) -1)) != v) {
counter_fail += 1;
if (counter_fail > 1) {
INFO("0x%X COUNTER FAIL %d -- %d vs %d\n", address, counter_fail, old_counter, (int)v);
}
if (counter_fail >= MAX_BAD_COUNTER) {
return false;
}
} else if (counter_fail > 0) {
counter_fail--;
}
return true;
}
};
class CANParser {
public:
CANParser(int abus, const std::string& dbc_name,
const std::vector<MessageParseOptions> &options,
const std::vector<SignalParseOptions> &sigoptions,
bool sendcan, const std::string& tcp_addr, int timeout=-1)
: bus(abus) {
// connect to can on 8006
context = zmq_ctx_new();
if (tcp_addr.length() > 0) {
subscriber = zmq_socket(context, ZMQ_SUB);
zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, "", 0);
zmq_setsockopt(subscriber, ZMQ_RCVTIMEO, &timeout, sizeof(int));
std::string tcp_addr_str;
if (sendcan) {
tcp_addr_str = "tcp://" + tcp_addr + ":8017";
} else {
tcp_addr_str = "tcp://" + tcp_addr + ":8006";
}
const char *tcp_addr_char = tcp_addr_str.c_str();
zmq_connect(subscriber, tcp_addr_char);
// drain sendcan to delete any stale messages from previous runs
zmq_msg_t msgDrain;
zmq_msg_init(&msgDrain);
int err = 0;
while(err >= 0) {
err = zmq_msg_recv(&msgDrain, subscriber, ZMQ_DONTWAIT);
}
} else {
subscriber = NULL;
}
dbc = dbc_lookup(dbc_name);
assert(dbc);
init_crc_lookup_tables();
for (const auto& op : options) {
MessageState state = {
.address = op.address,
// .check_frequency = op.check_frequency,
};
// msg is not valid if a message isn't received for 10 consecutive steps
if (op.check_frequency > 0) {
state.check_threshold = (1000000000ULL / op.check_frequency) * 10;
}
const Msg* msg = NULL;
for (int i=0; i<dbc->num_msgs; i++) {
if (dbc->msgs[i].address == op.address) {
msg = &dbc->msgs[i];
break;
}
}
if (!msg) {
fprintf(stderr, "CANParser: could not find message 0x%X in dnc %s\n", op.address, dbc_name.c_str());
assert(false);
}
state.size = msg->size;
// track checksums and counters for this message
for (int i=0; i<msg->num_sigs; i++) {
const Signal *sig = &msg->sigs[i];
if (sig->type != SignalType::DEFAULT) {
state.parse_sigs.push_back(*sig);
state.vals.push_back(0);
}
}
// track requested signals for this message
for (const auto& sigop : sigoptions) {
if (sigop.address != op.address) continue;
for (int i=0; i<msg->num_sigs; i++) {
const Signal *sig = &msg->sigs[i];
if (strcmp(sig->name, sigop.name) == 0
&& sig->type == SignalType::DEFAULT) {
state.parse_sigs.push_back(*sig);
state.vals.push_back(sigop.default_value);
break;
}
}
}
message_states[state.address] = state;
}
}
void UpdateCans(uint64_t sec, const capnp::List<cereal::CanData>::Reader& cans) {
int msg_count = cans.size();
uint64_t p;
DEBUG("got %d messages\n", msg_count);
// parse the messages
for (int i = 0; i < msg_count; i++) {
auto cmsg = cans[i];
if (cmsg.getSrc() != bus) {
// DEBUG("skip %d: wrong bus\n", cmsg.getAddress());
continue;
}
auto state_it = message_states.find(cmsg.getAddress());
if (state_it == message_states.end()) {
// DEBUG("skip %d: not specified\n", cmsg.getAddress());
continue;
}
if (cmsg.getDat().size() > 8) continue; //shouldnt ever happen
uint8_t dat[8] = {0};
memcpy(dat, cmsg.getDat().begin(), cmsg.getDat().size());
// Assumes all signals in the message are of the same type (little or big endian)
// TODO: allow signals within the same message to have different endianess
auto& sig = message_states[cmsg.getAddress()].parse_sigs[0];
if (sig.is_little_endian) {
p = read_u64_le(dat);
} else {
p = read_u64_be(dat);
}
DEBUG(" proc %X: %llx\n", cmsg.getAddress(), p);
state_it->second.parse(sec, cmsg.getBusTime(), p);
}
}
void UpdateValid(uint64_t sec) {
can_valid = true;
for (const auto& kv : message_states) {
const auto& state = kv.second;
if (state.check_threshold > 0 && (sec - state.seen) > state.check_threshold) {
if (state.seen > 0) {
DEBUG("%X TIMEOUT\n", state.address);
}
can_valid = false;
}
}
}
void update_string(std::string data) {
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((data.length() / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), data.data(), data.length());
// extract the messages
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
last_sec = event.getLogMonoTime();
auto cans = event.getCan();
UpdateCans(last_sec, cans);
UpdateValid(last_sec);
}
int update(uint64_t sec, bool wait) {
int err;
int result = 0;
// recv from can
zmq_msg_t msg;
zmq_msg_init(&msg);
// multiple recv is fine
bool first = wait;
while (subscriber != NULL) {
if (first) {
err = zmq_msg_recv(&msg, subscriber, 0);
first = false;
// When we timeout on the first message, return error
if (err < 0){
result = -1;
}
} else {
err = zmq_msg_recv(&msg, subscriber, ZMQ_DONTWAIT);
}
if (err < 0) break;
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((zmq_msg_size(&msg) / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), zmq_msg_data(&msg), zmq_msg_size(&msg));
// extract the messages
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
auto cans = event.getCan();
UpdateCans(sec, cans);
}
last_sec = sec;
UpdateValid(sec);
zmq_msg_close(&msg);
return result;
}
std::vector<SignalValue> query_latest() {
std::vector<SignalValue> ret;
for (const auto& kv : message_states) {
const auto& state = kv.second;
if (last_sec != 0 && state.seen != last_sec) continue;
for (int i=0; i<state.parse_sigs.size(); i++) {
const Signal &sig = state.parse_sigs[i];
ret.push_back((SignalValue){
.address = state.address,
.ts = state.ts,
.name = sig.name,
.value = state.vals[i],
});
}
}
return ret;
}
bool can_valid = false;
uint64_t last_sec = 0;
private:
const int bus;
// zmq vars
void *context = NULL;
void *subscriber = NULL;
const DBC *dbc = NULL;
std::unordered_map<uint32_t, MessageState> message_states;
};
}
extern "C" {
void* can_init(int bus, const char* dbc_name,
size_t num_message_options, const MessageParseOptions* message_options,
size_t num_signal_options, const SignalParseOptions* signal_options,
bool sendcan, const char* tcp_addr, int timeout) {
CANParser* ret = new CANParser(bus, std::string(dbc_name),
(message_options ? std::vector<MessageParseOptions>(message_options, message_options+num_message_options)
: std::vector<MessageParseOptions>{}),
(signal_options ? std::vector<SignalParseOptions>(signal_options, signal_options+num_signal_options)
: std::vector<SignalParseOptions>{}), sendcan, std::string(tcp_addr), timeout);
return (void*)ret;
}
void* can_init_with_vectors(int bus, const char* dbc_name,
std::vector<MessageParseOptions> message_options,
std::vector<SignalParseOptions> signal_options,
bool sendcan, const char* tcp_addr, int timeout) {
CANParser* ret = new CANParser(bus, std::string(dbc_name),
message_options,
signal_options,
sendcan, std::string(tcp_addr), timeout);
return (void*)ret;
}
int can_update(void* can, uint64_t sec, bool wait) {
CANParser* cp = (CANParser*)can;
return cp->update(sec, wait);
}
void can_update_string(void *can, const char* dat, int len) {
CANParser* cp = (CANParser*)can;
cp->update_string(std::string(dat, len));
}
size_t can_query_latest(void* can, bool *out_can_valid, size_t out_values_size, SignalValue* out_values) {
CANParser* cp = (CANParser*)can;
if (out_can_valid) {
*out_can_valid = cp->can_valid;
}
const std::vector<SignalValue> values = cp->query_latest();
if (out_values) {
std::copy(values.begin(), values.begin()+std::min(out_values_size, values.size()), out_values);
}
return values.size();
};
void can_query_latest_vector(void* can, bool *out_can_valid, std::vector<SignalValue> &values) {
CANParser* cp = (CANParser*)can;
if (out_can_valid) {
*out_can_valid = cp->can_valid;
}
values = cp->query_latest();
};
}
#ifdef TEST
int main(int argc, char** argv) {
CANParser cp(0, "honda_civic_touring_2016_can",
std::vector<MessageParseOptions>{
// address, check_frequency
{0x14a, 100},
{0x158, 100},
{0x17c, 100},
{0x191, 100},
{0x1a4, 50},
{0x326, 10},
{0x1b0, 50},
{0x1d0, 50},
{0x305, 10},
{0x324, 10},
{0x405, 3},
{0x18f, 0},
{0x130, 0},
{0x296, 0},
{0x30c, 0},
},
std::vector<SignalParseOptions>{
// sig_name, sig_address, default
{0x158, "XMISSION_SPEED", 0},
{0x1d0, "WHEEL_SPEED_FL", 0},
{0x1d0, "WHEEL_SPEED_FR", 0},
{0x1d0, "WHEEL_SPEED_RL", 0},
{0x14a, "STEER_ANGLE", 0},
{0x18f, "STEER_TORQUE_SENSOR", 0},
{0x191, "GEAR", 0},
{0x1b0, "WHEELS_MOVING", 1},
{0x405, "DOOR_OPEN_FL", 1},
{0x405, "DOOR_OPEN_FR", 1},
{0x405, "DOOR_OPEN_RL", 1},
{0x405, "DOOR_OPEN_RR", 1},
{0x324, "CRUISE_SPEED_PCM", 0},
{0x305, "SEATBELT_DRIVER_LAMP", 1},
{0x305, "SEATBELT_DRIVER_LATCHED", 0},
{0x17c, "BRAKE_PRESSED", 0},
{0x130, "CAR_GAS", 0},
{0x296, "CRUISE_BUTTONS", 0},
{0x1a4, "ESP_DISABLED", 1},
{0x30c, "HUD_LEAD", 0},
{0x1a4, "USER_BRAKE", 0},
{0x18f, "STEER_STATUS", 5},
{0x1d0, "WHEEL_SPEED_RR", 0},
{0x1b0, "BRAKE_ERROR_1", 1},
{0x1b0, "BRAKE_ERROR_2", 1},
{0x191, "GEAR_SHIFTER", 0},
{0x326, "MAIN_ON", 0},
{0x17c, "ACC_STATUS", 0},
{0x17c, "PEDAL_GAS", 0},
{0x296, "CRUISE_SETTING", 0},
{0x326, "LEFT_BLINKER", 0},
{0x326, "RIGHT_BLINKER", 0},
{0x324, "COUNTER", 0},
{0x17c, "ENGINE_RPM", 0},
});
const std::string log_fn = "dats.bin";
int log_fd = open(log_fn.c_str(), O_RDONLY, 0);
assert(log_fd >= 0);
off_t log_size = lseek(log_fd, 0, SEEK_END);
lseek(log_fd, 0, SEEK_SET);
void* log_data = mmap(NULL, log_size, PROT_READ, MAP_PRIVATE, log_fd, 0);
assert(log_data);
auto words = kj::arrayPtr((const capnp::word*)log_data, log_size/sizeof(capnp::word));
while (words.size() > 0) {
capnp::FlatArrayMessageReader reader(words);
auto evt = reader.getRoot<cereal::Event>();
auto cans = evt.getCan();
cp.UpdateCans(0, cans);
words = kj::arrayPtr(reader.getEnd(), words.end());
}
munmap(log_data, log_size);
close(log_fd);
return 0;
}
#endif