openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

73 lines
2.4 KiB

import gc
from tinygrad import Tensor, UOp, Device
from tinygrad.shape.shapetracker import views_to_indexed_uops
from tinygrad.engine.realize import method_cache, get_kernel
def uops_allocated(): return sum([isinstance(x, UOp) for x in gc.get_objects()])
def print_uops():
for x in gc.get_objects():
if isinstance(x, UOp): print(x)
def start(): pass
def single_tensor(): Tensor([2])
def two_plus_two(): Tensor([2])+Tensor([2])
def two_plus_two_schedule(): (Tensor([2])+Tensor([2])).schedule()
def two_plus_two_kernel():
si = (Tensor([2])+Tensor([2])).schedule()[-1]
get_kernel(Device.default.renderer, si.ast)
def two_plus_two_linearize():
si = (Tensor([2])+Tensor([2])).schedule()[-1]
k = get_kernel(Device.default.renderer, si.ast)
k.get_optimized_ast()
#k.linearize()
def two_plus_two_realize(): (Tensor([2])+Tensor([2])).realize()
def two_plus_two_item(): (Tensor([2])+Tensor([2])).item()
def gradient_test():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
def realized_eye():
Tensor.eye(3, requires_grad=True).realize()
def realized_list():
Tensor([[2.0,0,-2.0]], requires_grad=True).realize()
def kernel_matmul():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x)
si = z.schedule()[-1]
get_kernel(Device.default.renderer, si.ast)
def realized_matmul():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x)
Tensor.realize(z)
def realized_gradient():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
Tensor.realize(x, y, z, x.grad, y.grad)
tests = [start, single_tensor, two_plus_two, two_plus_two_schedule, two_plus_two_kernel,
two_plus_two_linearize, two_plus_two_realize, two_plus_two_item, gradient_test,
realized_eye, realized_list, kernel_matmul, realized_matmul, realized_gradient]
if __name__ == "__main__":
gc.disable()
start_uops = uops_allocated()
# there's a few consts created as default values
print_uops()
for t in tests:
t()
# these caches will keep uops alive
method_cache.clear()
views_to_indexed_uops.cache_clear()
new_uops = uops_allocated()
gc.collect()
new_uops_gc = uops_allocated()
print(f"{t.__name__:30s}: {new_uops:3d} -> {new_uops_gc:3d}")
assert new_uops == start_uops
#print_uops()