openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

320 lines
9.2 KiB

#include "selfdrive/boardd/panda.h"
#include <unistd.h>
#include <cassert>
#include <stdexcept>
#include "cereal/messaging/messaging.h"
#include "common/swaglog.h"
#include "common/util.h"
Panda::Panda(std::string serial, uint32_t bus_offset) : bus_offset(bus_offset) {
// try USB first, then SPI
try {
handle = std::make_unique<PandaUsbHandle>(serial);
2 years ago
LOGW("connected to %s over USB", serial.c_str());
} catch (std::exception &e) {
#ifndef __APPLE__
handle = std::make_unique<PandaSpiHandle>(serial);
2 years ago
LOGW("connected to %s over SPI", serial.c_str());
#endif
}
hw_type = get_hw_type();
has_rtc = (hw_type == cereal::PandaState::PandaType::UNO) ||
(hw_type == cereal::PandaState::PandaType::DOS) ||
(hw_type == cereal::PandaState::PandaType::TRES);
can_reset_communications();
return;
}
bool Panda::connected() {
return handle->connected;
}
bool Panda::comms_healthy() {
return handle->comms_healthy;
}
std::string Panda::hw_serial() {
return handle->hw_serial;
}
std::vector<std::string> Panda::list(bool usb_only) {
std::vector<std::string> serials = PandaUsbHandle::list();
#ifndef __APPLE__
if (!usb_only) {
for (auto s : PandaSpiHandle::list()) {
if (std::find(serials.begin(), serials.end(), s) == serials.end()) {
serials.push_back(s);
}
}
}
#endif
return serials;
}
void Panda::set_safety_model(cereal::CarParams::SafetyModel safety_model, uint16_t safety_param) {
handle->control_write(0xdc, (uint16_t)safety_model, safety_param);
}
void Panda::set_alternative_experience(uint16_t alternative_experience) {
handle->control_write(0xdf, alternative_experience, 0);
}
cereal::PandaState::PandaType Panda::get_hw_type() {
unsigned char hw_query[1] = {0};
handle->control_read(0xc1, 0, 0, hw_query, 1);
return (cereal::PandaState::PandaType)(hw_query[0]);
}
void Panda::set_rtc(struct tm sys_time) {
// tm struct has year defined as years since 1900
handle->control_write(0xa1, (uint16_t)(1900 + sys_time.tm_year), 0);
handle->control_write(0xa2, (uint16_t)(1 + sys_time.tm_mon), 0);
handle->control_write(0xa3, (uint16_t)sys_time.tm_mday, 0);
// handle->control_write(0xa4, (uint16_t)(1 + sys_time.tm_wday), 0);
handle->control_write(0xa5, (uint16_t)sys_time.tm_hour, 0);
handle->control_write(0xa6, (uint16_t)sys_time.tm_min, 0);
handle->control_write(0xa7, (uint16_t)sys_time.tm_sec, 0);
}
struct tm Panda::get_rtc() {
struct __attribute__((packed)) timestamp_t {
uint16_t year; // Starts at 0
uint8_t month;
uint8_t day;
uint8_t weekday;
uint8_t hour;
uint8_t minute;
uint8_t second;
} rtc_time = {0};
handle->control_read(0xa0, 0, 0, (unsigned char*)&rtc_time, sizeof(rtc_time));
struct tm new_time = { 0 };
new_time.tm_year = rtc_time.year - 1900; // tm struct has year defined as years since 1900
new_time.tm_mon = rtc_time.month - 1;
new_time.tm_mday = rtc_time.day;
new_time.tm_hour = rtc_time.hour;
new_time.tm_min = rtc_time.minute;
new_time.tm_sec = rtc_time.second;
return new_time;
}
void Panda::set_fan_speed(uint16_t fan_speed) {
handle->control_write(0xb1, fan_speed, 0);
}
uint16_t Panda::get_fan_speed() {
uint16_t fan_speed_rpm = 0;
handle->control_read(0xb2, 0, 0, (unsigned char*)&fan_speed_rpm, sizeof(fan_speed_rpm));
return fan_speed_rpm;
}
void Panda::set_ir_pwr(uint16_t ir_pwr) {
handle->control_write(0xb0, ir_pwr, 0);
}
std::optional<health_t> Panda::get_state() {
health_t health {0};
int err = handle->control_read(0xd2, 0, 0, (unsigned char*)&health, sizeof(health));
return err >= 0 ? std::make_optional(health) : std::nullopt;
}
std::optional<can_health_t> Panda::get_can_state(uint16_t can_number) {
can_health_t can_health {0};
int err = handle->control_read(0xc2, can_number, 0, (unsigned char*)&can_health, sizeof(can_health));
return err >= 0 ? std::make_optional(can_health) : std::nullopt;
}
void Panda::set_loopback(bool loopback) {
handle->control_write(0xe5, loopback, 0);
}
std::optional<std::vector<uint8_t>> Panda::get_firmware_version() {
std::vector<uint8_t> fw_sig_buf(128);
int read_1 = handle->control_read(0xd3, 0, 0, &fw_sig_buf[0], 64);
int read_2 = handle->control_read(0xd4, 0, 0, &fw_sig_buf[64], 64);
return ((read_1 == 64) && (read_2 == 64)) ? std::make_optional(fw_sig_buf) : std::nullopt;
}
std::optional<std::string> Panda::get_serial() {
char serial_buf[17] = {'\0'};
int err = handle->control_read(0xd0, 0, 0, (uint8_t*)serial_buf, 16);
return err >= 0 ? std::make_optional(serial_buf) : std::nullopt;
}
bool Panda::up_to_date() {
if (auto fw_sig = get_firmware_version()) {
for (auto fn : { "panda.bin.signed", "panda_h7.bin.signed" }) {
auto content = util::read_file(std::string("../../panda/board/obj/") + fn);
if (content.size() >= fw_sig->size() &&
memcmp(content.data() + content.size() - fw_sig->size(), fw_sig->data(), fw_sig->size()) == 0) {
return true;
}
}
}
return false;
}
void Panda::set_power_saving(bool power_saving) {
handle->control_write(0xe7, power_saving, 0);
}
void Panda::enable_deepsleep() {
handle->control_write(0xfb, 0, 0);
}
void Panda::send_heartbeat(bool engaged) {
handle->control_write(0xf3, engaged, 0);
}
void Panda::set_can_speed_kbps(uint16_t bus, uint16_t speed) {
handle->control_write(0xde, bus, (speed * 10));
}
void Panda::set_data_speed_kbps(uint16_t bus, uint16_t speed) {
handle->control_write(0xf9, bus, (speed * 10));
}
void Panda::set_canfd_non_iso(uint16_t bus, bool non_iso) {
handle->control_write(0xfc, bus, non_iso);
}
static uint8_t len_to_dlc(uint8_t len) {
if (len <= 8) {
return len;
}
if (len <= 24) {
return 8 + ((len - 8) / 4) + ((len % 4) ? 1 : 0);
} else {
return 11 + (len / 16) + ((len % 16) ? 1 : 0);
}
}
void Panda::pack_can_buffer(const capnp::List<cereal::CanData>::Reader &can_data_list,
std::function<void(uint8_t *, size_t)> write_func) {
int32_t pos = 0;
uint8_t send_buf[2 * USB_TX_SOFT_LIMIT];
for (auto cmsg : can_data_list) {
// check if the message is intended for this panda
uint8_t bus = cmsg.getSrc();
if (bus < bus_offset || bus >= (bus_offset + PANDA_BUS_CNT)) {
continue;
}
auto can_data = cmsg.getDat();
uint8_t data_len_code = len_to_dlc(can_data.size());
assert(can_data.size() <= 64);
assert(can_data.size() == dlc_to_len[data_len_code]);
can_header header = {};
header.addr = cmsg.getAddress();
header.extended = (cmsg.getAddress() >= 0x800) ? 1 : 0;
header.data_len_code = data_len_code;
header.bus = bus - bus_offset;
header.checksum = 0;
memcpy(&send_buf[pos], (uint8_t *)&header, sizeof(can_header));
memcpy(&send_buf[pos + sizeof(can_header)], (uint8_t *)can_data.begin(), can_data.size());
uint32_t msg_size = sizeof(can_header) + can_data.size();
// set checksum
((can_header *) &send_buf[pos])->checksum = calculate_checksum(&send_buf[pos], msg_size);
pos += msg_size;
if (pos >= USB_TX_SOFT_LIMIT) {
write_func(send_buf, pos);
pos = 0;
}
}
// send remaining packets
if (pos > 0) write_func(send_buf, pos);
}
void Panda::can_send(capnp::List<cereal::CanData>::Reader can_data_list) {
pack_can_buffer(can_data_list, [=](uint8_t* data, size_t size) {
handle->bulk_write(3, data, size, 5);
});
}
bool Panda::can_receive(std::vector<can_frame>& out_vec) {
// Check if enough space left in buffer to store RECV_SIZE data
assert(receive_buffer_size + RECV_SIZE <= sizeof(receive_buffer));
int recv = handle->bulk_read(0x81, &receive_buffer[receive_buffer_size], RECV_SIZE);
if (!comms_healthy()) {
return false;
}
if (recv == RECV_SIZE) {
LOGW("Panda receive buffer full");
}
receive_buffer_size += recv;
return (recv <= 0) ? true : unpack_can_buffer(receive_buffer, receive_buffer_size, out_vec);
}
void Panda::can_reset_communications() {
handle->control_write(0xc0, 0, 0);
}
bool Panda::unpack_can_buffer(uint8_t *data, uint32_t &size, std::vector<can_frame> &out_vec) {
int pos = 0;
while (pos <= size - sizeof(can_header)) {
can_header header;
memcpy(&header, &data[pos], sizeof(can_header));
const uint8_t data_len = dlc_to_len[header.data_len_code];
if (pos + sizeof(can_header) + data_len > size) {
// we don't have all the data for this message yet
break;
}
can_frame &canData = out_vec.emplace_back();
canData.busTime = 0;
canData.address = header.addr;
canData.src = header.bus + bus_offset;
if (header.rejected) {
canData.src += CAN_REJECTED_BUS_OFFSET;
}
if (header.returned) {
canData.src += CAN_RETURNED_BUS_OFFSET;
}
if (calculate_checksum(&data[pos], sizeof(can_header) + data_len) != 0) {
LOGE("Panda CAN checksum failed");
size = 0;
return false;
}
canData.dat.assign((char *)&data[pos + sizeof(can_header)], data_len);
pos += sizeof(can_header) + data_len;
}
// move the overflowing data to the beginning of the buffer for the next round
memmove(data, &data[pos], size - pos);
size -= pos;
return true;
}
uint8_t Panda::calculate_checksum(uint8_t *data, uint32_t len) {
uint8_t checksum = 0U;
for (uint32_t i = 0U; i < len; i++) {
checksum ^= data[i];
}
return checksum;
}