#!/usr/bin/env python3
import math
import numpy as np
import sympy as sp
import cereal . messaging as messaging
import common . transformations . coordinates as coord
from common . transformations . orientation import ( ecef_euler_from_ned ,
euler_from_quat ,
ned_euler_from_ecef ,
quat_from_euler ,
rot_from_quat , rot_from_euler )
from selfdrive . locationd . kalman . helpers import ObservationKind , KalmanError
from selfdrive . locationd . kalman . models . live_kf import LiveKalman , States
from selfdrive . swaglog import cloudlog
#from datetime import datetime
#from laika.gps_time import GPSTime
from sympy . utilities . lambdify import lambdify
from selfdrive . locationd . kalman . helpers . sympy_helpers import euler_rotate
VISION_DECIMATION = 2
SENSOR_DECIMATION = 10
def to_float ( arr ) :
return [ float ( arr [ 0 ] ) , float ( arr [ 1 ] ) , float ( arr [ 2 ] ) ]
def get_H ( ) :
# this returns a function to eval the jacobian
# of the observation function of the local vel
roll = sp . Symbol ( ' roll ' )
pitch = sp . Symbol ( ' pitch ' )
yaw = sp . Symbol ( ' yaw ' )
vx = sp . Symbol ( ' vx ' )
vy = sp . Symbol ( ' vy ' )
vz = sp . Symbol ( ' vz ' )
h = euler_rotate ( roll , pitch , yaw ) . T * ( sp . Matrix ( [ vx , vy , vz ] ) )
H = h . jacobian ( sp . Matrix ( [ roll , pitch , yaw , vx , vy , vz ] ) )
H_f = lambdify ( [ roll , pitch , yaw , vx , vy , vz ] , H )
return H_f
class Localizer ( ) :
def __init__ ( self , disabled_logs = [ ] , dog = None ) :
self . kf = LiveKalman ( )
self . reset_kalman ( )
self . max_age = .2 # seconds
self . disabled_logs = disabled_logs
self . calib = np . zeros ( 3 )
self . device_from_calib = np . eye ( 3 )
self . calib_from_device = np . eye ( 3 )
self . calibrated = 0
self . H = get_H ( )
def liveLocationMsg ( self , time ) :
predicted_state = self . kf . x
predicted_cov = self . kf . P
predicted_std = np . sqrt ( np . diagonal ( self . kf . P ) )
fix_ecef = predicted_state [ States . ECEF_POS ]
fix_ecef_std = predicted_std [ States . ECEF_POS_ERR ]
vel_ecef = predicted_state [ States . ECEF_VELOCITY ]
vel_ecef_std = predicted_std [ States . ECEF_VELOCITY_ERR ]
fix_pos_geo = coord . ecef2geodetic ( fix_ecef )
fix_pos_geo_std = coord . ecef2geodetic ( fix_ecef + fix_ecef_std ) - fix_pos_geo
orientation_ecef = euler_from_quat ( predicted_state [ States . ECEF_ORIENTATION ] )
orientation_ecef_std = predicted_std [ States . ECEF_ORIENTATION_ERR ]
acc_calib = self . calib_from_device . dot ( predicted_state [ States . ACCELERATION ] )
acc_calib_std = np . sqrt ( np . diagonal ( self . calib_from_device . dot (
predicted_cov [ States . ACCELERATION_ERR , States . ACCELERATION_ERR ] ) . dot (
self . calib_from_device . T ) ) )
ang_vel_calib = self . calib_from_device . dot ( predicted_state [ States . ANGULAR_VELOCITY ] )
ang_vel_calib_std = np . sqrt ( np . diagonal ( self . calib_from_device . dot (
predicted_cov [ States . ANGULAR_VELOCITY_ERR , States . ANGULAR_VELOCITY_ERR ] ) . dot (
self . calib_from_device . T ) ) )
device_from_ecef = rot_from_quat ( predicted_state [ States . ECEF_ORIENTATION ] ) . T
vel_device = device_from_ecef . dot ( vel_ecef )
device_from_ecef_eul = euler_from_quat ( predicted_state [ States . ECEF_ORIENTATION ] ) . T
idxs = list ( range ( States . ECEF_ORIENTATION_ERR . start , States . ECEF_ORIENTATION_ERR . stop ) ) + list ( range ( States . ECEF_VELOCITY_ERR . start , States . ECEF_VELOCITY_ERR . stop ) )
condensed_cov = predicted_cov [ idxs ] [ : , idxs ]
H = self . H ( * list ( np . concatenate ( [ device_from_ecef_eul , vel_ecef ] ) ) )
vel_device_cov = H . dot ( condensed_cov ) . dot ( H . T )
vel_device_std = np . sqrt ( np . diagonal ( vel_device_cov ) )
vel_calib = self . calib_from_device . dot ( vel_device )
vel_calib_std = np . sqrt ( np . diagonal ( self . calib_from_device . dot (
vel_device_cov ) . dot (
self . calib_from_device . T ) ) )
orientation_ned = ned_euler_from_ecef ( fix_ecef , orientation_ecef )
#orientation_ned_std = ned_euler_from_ecef(fix_ecef, orientation_ecef + orientation_ecef_std) - orientation_ned
ned_vel = self . converter . ecef2ned ( fix_ecef + vel_ecef ) - self . converter . ecef2ned ( fix_ecef )
#ned_vel_std = self.converter.ecef2ned(fix_ecef + vel_ecef + vel_ecef_std) - self.converter.ecef2ned(fix_ecef + vel_ecef)
fix = messaging . log . LiveLocationKalman . new_message ( )
fix . positionGeodetic . value = to_float ( fix_pos_geo )
fix . positionGeodetic . std = to_float ( fix_pos_geo_std )
fix . positionGeodetic . valid = True
fix . positionECEF . value = to_float ( fix_ecef )
fix . positionECEF . std = to_float ( fix_ecef_std )
fix . positionECEF . valid = True
fix . velocityECEF . value = to_float ( vel_ecef )
fix . velocityECEF . std = to_float ( vel_ecef_std )
fix . velocityECEF . valid = True
fix . velocityNED . value = to_float ( ned_vel )
#fix.velocityNED.std = to_float(ned_vel_std)
#fix.velocityNED.valid = True
fix . velocityDevice . value = to_float ( vel_device )
fix . velocityDevice . std = to_float ( vel_device_std )
fix . velocityDevice . valid = True
fix . accelerationDevice . value = to_float ( predicted_state [ States . ACCELERATION ] )
fix . accelerationDevice . std = to_float ( predicted_std [ States . ACCELERATION_ERR ] )
fix . accelerationDevice . valid = True
fix . orientationECEF . value = to_float ( orientation_ecef )
fix . orientationECEF . std = to_float ( orientation_ecef_std )
fix . orientationECEF . valid = True
fix . orientationNED . value = to_float ( orientation_ned )
#fix.orientationNED.std = to_float(orientation_ned_std)
#fix.orientationNED.valid = True
fix . angularVelocityDevice . value = to_float ( predicted_state [ States . ANGULAR_VELOCITY ] )
fix . angularVelocityDevice . std = to_float ( predicted_std [ States . ANGULAR_VELOCITY_ERR ] )
fix . angularVelocityDevice . valid = True
fix . velocityCalibrated . value = to_float ( vel_calib )
fix . velocityCalibrated . std = to_float ( vel_calib_std )
fix . velocityCalibrated . valid = True
fix . angularVelocityCalibrated . value = to_float ( ang_vel_calib )
fix . angularVelocityCalibrated . std = to_float ( ang_vel_calib_std )
fix . angularVelocityCalibrated . valid = True
fix . accelerationCalibrated . value = to_float ( acc_calib )
fix . accelerationCalibrated . std = to_float ( acc_calib_std )
fix . accelerationCalibrated . valid = True
#fix.gpsWeek = self.time.week
#fix.gpsTimeOfWeek = self.time.tow
fix . unixTimestampMillis = self . unix_timestamp_millis
if self . filter_ready and self . calibrated :
fix . status = ' valid '
elif self . filter_ready :
fix . status = ' uncalibrated '
else :
fix . status = ' uninitialized '
return fix
def update_kalman ( self , time , kind , meas ) :
if self . filter_ready :
try :
self . kf . predict_and_observe ( time , kind , meas )
except KalmanError :
cloudlog . error ( " Error in predict and observe, kalman reset " )
self . reset_kalman ( )
#idx = bisect_right([x[0] for x in self.observation_buffer], time)
#self.observation_buffer.insert(idx, (time, kind, meas))
#while len(self.observation_buffer) > 0 and self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
# else:
# self.observation_buffer.pop(0)
def handle_gps ( self , current_time , log ) :
self . converter = coord . LocalCoord . from_geodetic ( [ log . latitude , log . longitude , log . altitude ] )
fix_ecef = self . converter . ned2ecef ( [ 0 , 0 , 0 ] )
#self.time = GPSTime.from_datetime(datetime.utcfromtimestamp(log.timestamp*1e-3))
self . unix_timestamp_millis = log . timestamp
# TODO initing with bad bearing not allowed, maybe not bad?
if not self . filter_ready and log . speed > 5 :
self . filter_ready = True
initial_ecef = fix_ecef
gps_bearing = math . radians ( log . bearing )
initial_pose_ecef = ecef_euler_from_ned ( initial_ecef , [ 0 , 0 , gps_bearing ] )
initial_pose_ecef_quat = quat_from_euler ( initial_pose_ecef )
gps_speed = log . speed
quat_uncertainty = 0.2 * * 2
initial_pose_ecef_quat = quat_from_euler ( initial_pose_ecef )
initial_state = LiveKalman . initial_x
initial_covs_diag = LiveKalman . initial_P_diag
initial_state [ States . ECEF_POS ] = initial_ecef
initial_state [ States . ECEF_ORIENTATION ] = initial_pose_ecef_quat
initial_state [ States . ECEF_VELOCITY ] = rot_from_quat ( initial_pose_ecef_quat ) . dot ( np . array ( [ gps_speed , 0 , 0 ] ) )
initial_covs_diag [ States . ECEF_POS_ERR ] = 10 * * 2
initial_covs_diag [ States . ECEF_ORIENTATION_ERR ] = quat_uncertainty
initial_covs_diag [ States . ECEF_VELOCITY_ERR ] = 1 * * 2
self . kf . init_state ( initial_state , covs = np . diag ( initial_covs_diag ) , filter_time = current_time )
cloudlog . info ( " Filter initialized " )
elif self . filter_ready :
self . update_kalman ( current_time , ObservationKind . ECEF_POS , fix_ecef )
gps_est_error = np . sqrt ( ( self . kf . x [ 0 ] - fix_ecef [ 0 ] ) * * 2 +
( self . kf . x [ 1 ] - fix_ecef [ 1 ] ) * * 2 +
( self . kf . x [ 2 ] - fix_ecef [ 2 ] ) * * 2 )
if gps_est_error > 50 :
cloudlog . error ( " Locationd vs ubloxLocation difference too large, kalman reset " )
self . reset_kalman ( )
def handle_car_state ( self , current_time , log ) :
self . speed_counter + = 1
if self . speed_counter % SENSOR_DECIMATION == 0 :
self . update_kalman ( current_time , ObservationKind . ODOMETRIC_SPEED , [ log . vEgo ] )
if log . vEgo == 0 :
self . update_kalman ( current_time , ObservationKind . NO_ROT , [ 0 , 0 , 0 ] )
def handle_cam_odo ( self , current_time , log ) :
self . cam_counter + = 1
if self . cam_counter % VISION_DECIMATION == 0 :
rot_device = self . device_from_calib . dot ( log . rot )
rot_device_std = self . device_from_calib . dot ( log . rotStd )
self . update_kalman ( current_time ,
ObservationKind . CAMERA_ODO_ROTATION ,
np . concatenate ( [ rot_device , rot_device_std ] ) )
trans_device = self . device_from_calib . dot ( log . trans )
trans_device_std = self . device_from_calib . dot ( log . transStd )
self . update_kalman ( current_time ,
ObservationKind . CAMERA_ODO_TRANSLATION ,
np . concatenate ( [ trans_device , trans_device_std ] ) )
def handle_sensors ( self , current_time , log ) :
# TODO does not yet account for double sensor readings in the log
for sensor_reading in log :
# Gyro Uncalibrated
if sensor_reading . sensor == 5 and sensor_reading . type == 16 :
self . gyro_counter + = 1
if self . gyro_counter % SENSOR_DECIMATION == 0 :
if max ( abs ( self . kf . x [ States . IMU_OFFSET ] ) ) > 0.07 :
cloudlog . info ( ' imu frame angles exceeded, correcting ' )
self . update_kalman ( current_time , ObservationKind . IMU_FRAME , [ 0 , 0 , 0 ] )
v = sensor_reading . gyroUncalibrated . v
self . update_kalman ( current_time , ObservationKind . PHONE_GYRO , [ - v [ 2 ] , - v [ 1 ] , - v [ 0 ] ] )
# Accelerometer
if sensor_reading . sensor == 1 and sensor_reading . type == 1 :
self . acc_counter + = 1
if self . acc_counter % SENSOR_DECIMATION == 0 :
v = sensor_reading . acceleration . v
self . update_kalman ( current_time , ObservationKind . PHONE_ACCEL , [ - v [ 2 ] , - v [ 1 ] , - v [ 0 ] ] )
def handle_live_calib ( self , current_time , log ) :
self . calib = log . rpyCalib
self . device_from_calib = rot_from_euler ( self . calib )
self . calib_from_device = self . device_from_calib . T
self . calibrated = log . calStatus == 1
def reset_kalman ( self ) :
self . filter_time = None
self . filter_ready = False
self . observation_buffer = [ ]
self . gyro_counter = 0
self . acc_counter = 0
self . speed_counter = 0
self . cam_counter = 0
def locationd_thread ( sm , pm , disabled_logs = [ ] ) :
if sm is None :
sm = messaging . SubMaster ( [ ' gpsLocationExternal ' , ' sensorEvents ' , ' cameraOdometry ' , ' liveCalibration ' ] )
if pm is None :
pm = messaging . PubMaster ( [ ' liveLocationKalman ' ] )
localizer = Localizer ( disabled_logs = disabled_logs )
while True :
sm . update ( )
for sock , updated in sm . updated . items ( ) :
if updated :
t = sm . logMonoTime [ sock ] * 1e-9
if sock == " sensorEvents " :
localizer . handle_sensors ( t , sm [ sock ] )
elif sock == " gpsLocationExternal " :
localizer . handle_gps ( t , sm [ sock ] )
elif sock == " carState " :
localizer . handle_car_state ( t , sm [ sock ] )
elif sock == " cameraOdometry " :
localizer . handle_cam_odo ( t , sm [ sock ] )
elif sock == " liveCalibration " :
localizer . handle_live_calib ( t , sm [ sock ] )
if localizer . filter_ready and sm . updated [ ' gpsLocationExternal ' ] :
t = sm . logMonoTime [ ' gpsLocationExternal ' ]
msg = messaging . new_message ( ' liveLocationKalman ' )
msg . logMonoTime = t
msg . liveLocationKalman = localizer . liveLocationMsg ( t * 1e-9 )
pm . send ( ' liveLocationKalman ' , msg )
def main ( sm = None , pm = None ) :
locationd_thread ( sm , pm )
if __name__ == " __main__ " :
import os
os . environ [ " OMP_NUM_THREADS " ] = " 1 "
main ( )