openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

382 lines
12 KiB

/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TVEC_IMPLEMENTATION
#error "Don't include TVecHelpers.h directly. use ui/vec*.h instead"
#else
#undef TVEC_IMPLEMENTATION
#endif
#ifndef UI_TVEC_HELPERS_H
#define UI_TVEC_HELPERS_H
#include <stdint.h>
#include <sys/types.h>
#define PURE __attribute__((pure))
namespace android {
// -------------------------------------------------------------------------------------
/*
* No user serviceable parts here.
*
* Don't use this file directly, instead include ui/vec{2|3|4}.h
*/
/*
* This class casts itself into anything and assign itself from anything!
* Use with caution!
*/
template <typename TYPE>
struct Impersonator {
Impersonator& operator = (const TYPE& rhs) {
reinterpret_cast<TYPE&>(*this) = rhs;
return *this;
}
operator TYPE& () {
return reinterpret_cast<TYPE&>(*this);
}
operator TYPE const& () const {
return reinterpret_cast<TYPE const&>(*this);
}
};
/*
* TVec{Add|Product}Operators implements basic arithmetic and basic compound assignments
* operators on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVec{Add|Product}Operators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class BASE, typename T>
class TVecAddOperators {
public:
/* compound assignment from a another vector of the same size but different
* element type.
*/
template <typename OTHER>
BASE<T>& operator += (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] += v[i];
}
return rhs;
}
template <typename OTHER>
BASE<T>& operator -= (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] -= v[i];
}
return rhs;
}
/* compound assignment from a another vector of the same type.
* These operators can be used for implicit conversion and handle operations
* like "vector *= scalar" by letting the compiler implicitly convert a scalar
* to a vector (assuming the BASE<T> allows it).
*/
BASE<T>& operator += (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] += v[i];
}
return rhs;
}
BASE<T>& operator -= (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] -= v[i];
}
return rhs;
}
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
/* The operators below handle operation between vectors of the same side
* but of a different element type.
*/
template<typename RT>
friend inline
BASE<T> PURE operator +(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) += rv;
}
template<typename RT>
friend inline
BASE<T> PURE operator -(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) -= rv;
}
/* The operators below (which are not templates once this class is instanced,
* i.e.: BASE<T> is known) can be used for implicit conversion on both sides.
* These handle operations like "vector * scalar" and "scalar * vector" by
* letting the compiler implicitly convert a scalar to a vector (assuming
* the BASE<T> allows it).
*/
friend inline
BASE<T> PURE operator +(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) += rv;
}
friend inline
BASE<T> PURE operator -(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) -= rv;
}
};
template <template<typename T> class BASE, typename T>
class TVecProductOperators {
public:
/* compound assignment from a another vector of the same size but different
* element type.
*/
template <typename OTHER>
BASE<T>& operator *= (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] *= v[i];
}
return rhs;
}
template <typename OTHER>
BASE<T>& operator /= (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] /= v[i];
}
return rhs;
}
/* compound assignment from a another vector of the same type.
* These operators can be used for implicit conversion and handle operations
* like "vector *= scalar" by letting the compiler implicitly convert a scalar
* to a vector (assuming the BASE<T> allows it).
*/
BASE<T>& operator *= (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] *= v[i];
}
return rhs;
}
BASE<T>& operator /= (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] /= v[i];
}
return rhs;
}
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
/* The operators below handle operation between vectors of the same side
* but of a different element type.
*/
template<typename RT>
friend inline
BASE<T> PURE operator *(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) *= rv;
}
template<typename RT>
friend inline
BASE<T> PURE operator /(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) /= rv;
}
/* The operators below (which are not templates once this class is instanced,
* i.e.: BASE<T> is known) can be used for implicit conversion on both sides.
* These handle operations like "vector * scalar" and "scalar * vector" by
* letting the compiler implicitly convert a scalar to a vector (assuming
* the BASE<T> allows it).
*/
friend inline
BASE<T> PURE operator *(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) *= rv;
}
friend inline
BASE<T> PURE operator /(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) /= rv;
}
};
/*
* TVecUnaryOperators implements unary operators on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecUnaryOperators<BASE, T> BASE will automatically
* get all the functionality here.
*
* These operators are implemented as friend functions of TVecUnaryOperators<BASE, T>
*/
template <template<typename T> class BASE, typename T>
class TVecUnaryOperators {
public:
BASE<T>& operator ++ () {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
++rhs[i];
}
return rhs;
}
BASE<T>& operator -- () {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
--rhs[i];
}
return rhs;
}
BASE<T> operator - () const {
BASE<T> r(BASE<T>::NO_INIT);
BASE<T> const& rv(static_cast<BASE<T> const&>(*this));
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
r[i] = -rv[i];
}
return r;
}
};
/*
* TVecComparisonOperators implements relational/comparison operators
* on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecComparisonOperators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class BASE, typename T>
class TVecComparisonOperators {
public:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename RT>
friend inline
bool PURE operator ==(const BASE<T>& lv, const BASE<RT>& rv) {
for (size_t i = 0; i < BASE<T>::size(); i++)
if (lv[i] != rv[i])
return false;
return true;
}
template<typename RT>
friend inline
bool PURE operator !=(const BASE<T>& lv, const BASE<RT>& rv) {
return !operator ==(lv, rv);
}
template<typename RT>
friend inline
bool PURE operator >(const BASE<T>& lv, const BASE<RT>& rv) {
for (size_t i = 0; i < BASE<T>::size(); i++)
if (lv[i] <= rv[i])
return false;
return true;
}
template<typename RT>
friend inline
bool PURE operator <=(const BASE<T>& lv, const BASE<RT>& rv) {
return !(lv > rv);
}
template<typename RT>
friend inline
bool PURE operator <(const BASE<T>& lv, const BASE<RT>& rv) {
for (size_t i = 0; i < BASE<T>::size(); i++)
if (lv[i] >= rv[i])
return false;
return true;
}
template<typename RT>
friend inline
bool PURE operator >=(const BASE<T>& lv, const BASE<RT>& rv) {
return !(lv < rv);
}
};
/*
* TVecFunctions implements functions on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecFunctions<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class BASE, typename T>
class TVecFunctions {
public:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename RT>
friend inline
T PURE dot(const BASE<T>& lv, const BASE<RT>& rv) {
T r(0);
for (size_t i = 0; i < BASE<T>::size(); i++)
r += lv[i]*rv[i];
return r;
}
friend inline
T PURE length(const BASE<T>& lv) {
return sqrt( dot(lv, lv) );
}
template<typename RT>
friend inline
T PURE distance(const BASE<T>& lv, const BASE<RT>& rv) {
return length(rv - lv);
}
friend inline
BASE<T> PURE normalize(const BASE<T>& lv) {
return lv * (1 / length(lv));
}
};
#undef PURE
// -------------------------------------------------------------------------------------
}; // namespace android
#endif /* UI_TVEC_HELPERS_H */