/*
* Copyright 2019 Gianluca Frison , Dimitris Kouzoupis , Robin Verschueren ,
* Andrea Zanelli , Niels van Duijkeren , Jonathan Frey , Tommaso Sartor ,
* Branimir Novoselnik , Rien Quirynen , Rezart Qelibari , Dang Doan ,
* Jonas Koenemann , Yutao Chen , Tobias Schöls , Jonas Schlagenhauf , Moritz Diehl
*
* This file is part of acados .
*
* The 2 - Clause BSD License
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions are met :
*
* 1. Redistributions of source code must retain the above copyright notice ,
* this list of conditions and the following disclaimer .
*
* 2. Redistributions in binary form must reproduce the above copyright notice ,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS " AS IS "
* AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR
* CONSEQUENTIAL DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS
* INTERRUPTION ) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
* CONTRACT , STRICT LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE )
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE . ;
*/
# ifndef {{ model.name }}_MODEL
# define {{ model.name }}_MODEL
# ifdef __cplusplus
extern " C " {
# endif
{ % - if solver_options . hessian_approx % }
{ % - set hessian_approx = solver_options . hessian_approx % }
{ % - elif solver_options . sens_hess % }
{ % - set hessian_approx = " EXACT " % }
{ % - else % }
{ % - set hessian_approx = " GAUSS_NEWTON " % }
{ % - endif % }
{ % if solver_options . integrator_type = = " IRK " or solver_options . integrator_type = = " LIFTED_IRK " % }
// implicit ODE
int { { model . name } } _impl_dae_fun ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _impl_dae_fun_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _impl_dae_fun_sparsity_in ( int ) ;
const int * { { model . name } } _impl_dae_fun_sparsity_out ( int ) ;
int { { model . name } } _impl_dae_fun_n_in ( void ) ;
int { { model . name } } _impl_dae_fun_n_out ( void ) ;
// implicit ODE
int { { model . name } } _impl_dae_fun_jac_x_xdot_z ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _impl_dae_fun_jac_x_xdot_z_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _impl_dae_fun_jac_x_xdot_z_sparsity_in ( int ) ;
const int * { { model . name } } _impl_dae_fun_jac_x_xdot_z_sparsity_out ( int ) ;
int { { model . name } } _impl_dae_fun_jac_x_xdot_z_n_in ( void ) ;
int { { model . name } } _impl_dae_fun_jac_x_xdot_z_n_out ( void ) ;
// implicit ODE
int { { model . name } } _impl_dae_jac_x_xdot_u_z ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _impl_dae_jac_x_xdot_u_z_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _impl_dae_jac_x_xdot_u_z_sparsity_in ( int ) ;
const int * { { model . name } } _impl_dae_jac_x_xdot_u_z_sparsity_out ( int ) ;
int { { model . name } } _impl_dae_jac_x_xdot_u_z_n_in ( void ) ;
int { { model . name } } _impl_dae_jac_x_xdot_u_z_n_out ( void ) ;
// implicit ODE - for lifted_irk
int { { model . name } } _impl_dae_fun_jac_x_xdot_u ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _impl_dae_fun_jac_x_xdot_u_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _impl_dae_fun_jac_x_xdot_u_sparsity_in ( int ) ;
const int * { { model . name } } _impl_dae_fun_jac_x_xdot_u_sparsity_out ( int ) ;
int { { model . name } } _impl_dae_fun_jac_x_xdot_u_n_in ( void ) ;
int { { model . name } } _impl_dae_fun_jac_x_xdot_u_n_out ( void ) ;
{ % - if hessian_approx = = " EXACT " % }
int { { model . name } } _impl_dae_hess ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _impl_dae_hess_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _impl_dae_hess_sparsity_in ( int ) ;
const int * { { model . name } } _impl_dae_hess_sparsity_out ( int ) ;
int { { model . name } } _impl_dae_hess_n_in ( void ) ;
int { { model . name } } _impl_dae_hess_n_out ( void ) ;
{ % - endif % }
{ % elif solver_options . integrator_type = = " GNSF " % }
/* GNSF Functions */
{ % if model . gnsf . purely_linear ! = 1 % }
// phi_fun
int { { model . name } } _gnsf_phi_fun ( const double * * arg , double * * res , int * iw , double * w , void * mem ) ;
int { { model . name } } _gnsf_phi_fun_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _gnsf_phi_fun_sparsity_in ( int ) ;
const int * { { model . name } } _gnsf_phi_fun_sparsity_out ( int ) ;
int { { model . name } } _gnsf_phi_fun_n_in ( void ) ;
int { { model . name } } _gnsf_phi_fun_n_out ( void ) ;
// phi_fun_jac_y
int { { model . name } } _gnsf_phi_fun_jac_y ( const double * * arg , double * * res , int * iw , double * w , void * mem ) ;
int { { model . name } } _gnsf_phi_fun_jac_y_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _gnsf_phi_fun_jac_y_sparsity_in ( int ) ;
const int * { { model . name } } _gnsf_phi_fun_jac_y_sparsity_out ( int ) ;
int { { model . name } } _gnsf_phi_fun_jac_y_n_in ( void ) ;
int { { model . name } } _gnsf_phi_fun_jac_y_n_out ( void ) ;
// phi_jac_y_uhat
int { { model . name } } _gnsf_phi_jac_y_uhat ( const double * * arg , double * * res , int * iw , double * w , void * mem ) ;
int { { model . name } } _gnsf_phi_jac_y_uhat_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _gnsf_phi_jac_y_uhat_sparsity_in ( int ) ;
const int * { { model . name } } _gnsf_phi_jac_y_uhat_sparsity_out ( int ) ;
int { { model . name } } _gnsf_phi_jac_y_uhat_n_in ( void ) ;
int { { model . name } } _gnsf_phi_jac_y_uhat_n_out ( void ) ;
{ % if model . gnsf . nontrivial_f_LO = = 1 % }
// f_lo_fun_jac_x1k1uz
int { { model . name } } _gnsf_f_lo_fun_jac_x1k1uz ( const double * * arg , double * * res , int * iw , double * w , void * mem ) ;
int { { model . name } } _gnsf_f_lo_fun_jac_x1k1uz_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _gnsf_f_lo_fun_jac_x1k1uz_sparsity_in ( int ) ;
const int * { { model . name } } _gnsf_f_lo_fun_jac_x1k1uz_sparsity_out ( int ) ;
int { { model . name } } _gnsf_f_lo_fun_jac_x1k1uz_n_in ( void ) ;
int { { model . name } } _gnsf_f_lo_fun_jac_x1k1uz_n_out ( void ) ;
{ % - endif % }
{ % - endif % }
// used to import model matrices
int { { model . name } } _gnsf_get_matrices_fun ( const double * * arg , double * * res , int * iw , double * w , void * mem ) ;
int { { model . name } } _gnsf_get_matrices_fun_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _gnsf_get_matrices_fun_sparsity_in ( int ) ;
const int * { { model . name } } _gnsf_get_matrices_fun_sparsity_out ( int ) ;
int { { model . name } } _gnsf_get_matrices_fun_n_in ( void ) ;
int { { model . name } } _gnsf_get_matrices_fun_n_out ( void ) ;
{ % elif solver_options . integrator_type = = " ERK " % }
/* explicit ODE */
// explicit ODE
int { { model . name } } _expl_ode_fun ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _expl_ode_fun_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _expl_ode_fun_sparsity_in ( int ) ;
const int * { { model . name } } _expl_ode_fun_sparsity_out ( int ) ;
int { { model . name } } _expl_ode_fun_n_in ( void ) ;
int { { model . name } } _expl_ode_fun_n_out ( void ) ;
// explicit forward VDE
int { { model . name } } _expl_vde_forw ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _expl_vde_forw_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _expl_vde_forw_sparsity_in ( int ) ;
const int * { { model . name } } _expl_vde_forw_sparsity_out ( int ) ;
int { { model . name } } _expl_vde_forw_n_in ( void ) ;
int { { model . name } } _expl_vde_forw_n_out ( void ) ;
// explicit adjoint VDE
int { { model . name } } _expl_vde_adj ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _expl_vde_adj_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _expl_vde_adj_sparsity_in ( int ) ;
const int * { { model . name } } _expl_vde_adj_sparsity_out ( int ) ;
int { { model . name } } _expl_vde_adj_n_in ( void ) ;
int { { model . name } } _expl_vde_adj_n_out ( void ) ;
{ % - if hessian_approx = = " EXACT " % }
int { { model . name } } _expl_ode_hess ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _expl_ode_hess_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _expl_ode_hess_sparsity_in ( int ) ;
const int * { { model . name } } _expl_ode_hess_sparsity_out ( int ) ;
int { { model . name } } _expl_ode_hess_n_in ( void ) ;
int { { model . name } } _expl_ode_hess_n_out ( void ) ;
{ % - endif % }
{ % elif solver_options . integrator_type = = " DISCRETE " % }
{ % if model . dyn_ext_fun_type = = " casadi " % }
int { { model . name } } _dyn_disc_phi_fun ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _dyn_disc_phi_fun_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _dyn_disc_phi_fun_sparsity_in ( int ) ;
const int * { { model . name } } _dyn_disc_phi_fun_sparsity_out ( int ) ;
int { { model . name } } _dyn_disc_phi_fun_n_in ( void ) ;
int { { model . name } } _dyn_disc_phi_fun_n_out ( void ) ;
int { { model . name } } _dyn_disc_phi_fun_jac ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _dyn_disc_phi_fun_jac_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _dyn_disc_phi_fun_jac_sparsity_in ( int ) ;
const int * { { model . name } } _dyn_disc_phi_fun_jac_sparsity_out ( int ) ;
int { { model . name } } _dyn_disc_phi_fun_jac_n_in ( void ) ;
int { { model . name } } _dyn_disc_phi_fun_jac_n_out ( void ) ;
{ % - if hessian_approx = = " EXACT " % }
int { { model . name } } _dyn_disc_phi_fun_jac_hess ( const real_t * * arg , real_t * * res , int * iw , real_t * w , void * mem ) ;
int { { model . name } } _dyn_disc_phi_fun_jac_hess_work ( int * , int * , int * , int * ) ;
const int * { { model . name } } _dyn_disc_phi_fun_jac_hess_sparsity_in ( int ) ;
const int * { { model . name } } _dyn_disc_phi_fun_jac_hess_sparsity_out ( int ) ;
int { { model . name } } _dyn_disc_phi_fun_jac_hess_n_in ( void ) ;
int { { model . name } } _dyn_disc_phi_fun_jac_hess_n_out ( void ) ;
{ % - endif % }
{ % else % }
{ % - if hessian_approx = = " EXACT " % }
int { { model . dyn_disc_fun_jac_hess } } ( void * * , void * * , void * ) ;
{ % endif % }
int { { model . dyn_disc_fun_jac } } ( void * * , void * * , void * ) ;
int { { model . dyn_disc_fun } } ( void * * , void * * , void * ) ;
{ % endif % }
{ % endif % }
# ifdef __cplusplus
} /* extern "C" */
# endif
# endif // {{ model.name }}_MODEL