openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

282 lines
12 KiB

Rewrite modeld in python (#29230) * Added modeld.py (WIP) * No more VisionIpcBufExtra * Started work on cython bindings for runmodel * Got ONNXModel cython bindings mostly working, added ModelFrame bindings * Got modeld main loop running without model eval * Move everything into ModelState * Doesn't crash! * Moved ModelState into modeld.py * Added driving_pyx * Added cython bindings for message generation * Moved CLContext definition to visionipc.pxd * *facepalm* * Move cl_pyx into commonmodel_pyx * Split out ONNXModel into a subclass of RunModel * Added snpemodel/thneedmodel bindings * Removed modeld.cc * Fixed scons for macOS * Fixed sconscript * Added flag for thneedmodel * paths are now relative to openpilot root dir * Set cl kernel paths in SConscript * Set LD_PRELOAD=libthneed.so to fix ioctl interception * Run from root dir * A few more fixes * A few more minor fixes * Use C update_calibration for now to exactly match refs * Add nav_instructions input * Link driving_pyx.pyx with transformations * Checked python FirstOrderFilter against C++ FirstOrderFilter * Set process name to fix test_onroad * Revert changes to onnxmodel.cc * Fixed bad onnx_runner.py path in onnxmodel.cc * Import all constants from driving.h * logging -> cloudlog * pylint import-error suppressions no longer needed? * Loop in SConscript * Added parens * Bump modeld cpu usage in test_onroad * Get rid of use_nav * use config_realtime_process * error message from ioctl sniffer was messing up pyenv * cast distance_idx to int * Removed cloudlog.infos in model.run * Fixed rebase conflicts * Clean up driving.pxd/pyx * Fixed linter error old-commit-hash: 72a3c987c0d9de6a0cd7a02bba032ccd5e1efe43
2 years ago
#!/usr/bin/env python3
import os
Rewrite modeld in python (#29230) * Added modeld.py (WIP) * No more VisionIpcBufExtra * Started work on cython bindings for runmodel * Got ONNXModel cython bindings mostly working, added ModelFrame bindings * Got modeld main loop running without model eval * Move everything into ModelState * Doesn't crash! * Moved ModelState into modeld.py * Added driving_pyx * Added cython bindings for message generation * Moved CLContext definition to visionipc.pxd * *facepalm* * Move cl_pyx into commonmodel_pyx * Split out ONNXModel into a subclass of RunModel * Added snpemodel/thneedmodel bindings * Removed modeld.cc * Fixed scons for macOS * Fixed sconscript * Added flag for thneedmodel * paths are now relative to openpilot root dir * Set cl kernel paths in SConscript * Set LD_PRELOAD=libthneed.so to fix ioctl interception * Run from root dir * A few more fixes * A few more minor fixes * Use C update_calibration for now to exactly match refs * Add nav_instructions input * Link driving_pyx.pyx with transformations * Checked python FirstOrderFilter against C++ FirstOrderFilter * Set process name to fix test_onroad * Revert changes to onnxmodel.cc * Fixed bad onnx_runner.py path in onnxmodel.cc * Import all constants from driving.h * logging -> cloudlog * pylint import-error suppressions no longer needed? * Loop in SConscript * Added parens * Bump modeld cpu usage in test_onroad * Get rid of use_nav * use config_realtime_process * error message from ioctl sniffer was messing up pyenv * cast distance_idx to int * Removed cloudlog.infos in model.run * Fixed rebase conflicts * Clean up driving.pxd/pyx * Fixed linter error old-commit-hash: 72a3c987c0d9de6a0cd7a02bba032ccd5e1efe43
2 years ago
import sys
import time
import numpy as np
from pathlib import Path
from typing import Dict, Optional
from setproctitle import setproctitle
from cereal.messaging import PubMaster, SubMaster
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.system.hardware import PC, TICI
Rewrite modeld in python (#29230) * Added modeld.py (WIP) * No more VisionIpcBufExtra * Started work on cython bindings for runmodel * Got ONNXModel cython bindings mostly working, added ModelFrame bindings * Got modeld main loop running without model eval * Move everything into ModelState * Doesn't crash! * Moved ModelState into modeld.py * Added driving_pyx * Added cython bindings for message generation * Moved CLContext definition to visionipc.pxd * *facepalm* * Move cl_pyx into commonmodel_pyx * Split out ONNXModel into a subclass of RunModel * Added snpemodel/thneedmodel bindings * Removed modeld.cc * Fixed scons for macOS * Fixed sconscript * Added flag for thneedmodel * paths are now relative to openpilot root dir * Set cl kernel paths in SConscript * Set LD_PRELOAD=libthneed.so to fix ioctl interception * Run from root dir * A few more fixes * A few more minor fixes * Use C update_calibration for now to exactly match refs * Add nav_instructions input * Link driving_pyx.pyx with transformations * Checked python FirstOrderFilter against C++ FirstOrderFilter * Set process name to fix test_onroad * Revert changes to onnxmodel.cc * Fixed bad onnx_runner.py path in onnxmodel.cc * Import all constants from driving.h * logging -> cloudlog * pylint import-error suppressions no longer needed? * Loop in SConscript * Added parens * Bump modeld cpu usage in test_onroad * Get rid of use_nav * use config_realtime_process * error message from ioctl sniffer was messing up pyenv * cast distance_idx to int * Removed cloudlog.infos in model.run * Fixed rebase conflicts * Clean up driving.pxd/pyx * Fixed linter error old-commit-hash: 72a3c987c0d9de6a0cd7a02bba032ccd5e1efe43
2 years ago
from openpilot.system.swaglog import cloudlog
from openpilot.common.params import Params
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import config_realtime_process
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext, Runtime
from openpilot.selfdrive.modeld.models.driving_pyx import (
PublishState, create_model_msg, create_pose_msg, update_calibration,
FEATURE_LEN, HISTORY_BUFFER_LEN, DESIRE_LEN, TRAFFIC_CONVENTION_LEN, NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN,
OUTPUT_SIZE, NET_OUTPUT_SIZE, MODEL_FREQ)
Rewrite modeld in python (#29230) * Added modeld.py (WIP) * No more VisionIpcBufExtra * Started work on cython bindings for runmodel * Got ONNXModel cython bindings mostly working, added ModelFrame bindings * Got modeld main loop running without model eval * Move everything into ModelState * Doesn't crash! * Moved ModelState into modeld.py * Added driving_pyx * Added cython bindings for message generation * Moved CLContext definition to visionipc.pxd * *facepalm* * Move cl_pyx into commonmodel_pyx * Split out ONNXModel into a subclass of RunModel * Added snpemodel/thneedmodel bindings * Removed modeld.cc * Fixed scons for macOS * Fixed sconscript * Added flag for thneedmodel * paths are now relative to openpilot root dir * Set cl kernel paths in SConscript * Set LD_PRELOAD=libthneed.so to fix ioctl interception * Run from root dir * A few more fixes * A few more minor fixes * Use C update_calibration for now to exactly match refs * Add nav_instructions input * Link driving_pyx.pyx with transformations * Checked python FirstOrderFilter against C++ FirstOrderFilter * Set process name to fix test_onroad * Revert changes to onnxmodel.cc * Fixed bad onnx_runner.py path in onnxmodel.cc * Import all constants from driving.h * logging -> cloudlog * pylint import-error suppressions no longer needed? * Loop in SConscript * Added parens * Bump modeld cpu usage in test_onroad * Get rid of use_nav * use config_realtime_process * error message from ioctl sniffer was messing up pyenv * cast distance_idx to int * Removed cloudlog.infos in model.run * Fixed rebase conflicts * Clean up driving.pxd/pyx * Fixed linter error old-commit-hash: 72a3c987c0d9de6a0cd7a02bba032ccd5e1efe43
2 years ago
USE_THNEED = int(os.getenv('USE_THNEED', str(int(TICI))))
Rewrite modeld in python (#29230) * Added modeld.py (WIP) * No more VisionIpcBufExtra * Started work on cython bindings for runmodel * Got ONNXModel cython bindings mostly working, added ModelFrame bindings * Got modeld main loop running without model eval * Move everything into ModelState * Doesn't crash! * Moved ModelState into modeld.py * Added driving_pyx * Added cython bindings for message generation * Moved CLContext definition to visionipc.pxd * *facepalm* * Move cl_pyx into commonmodel_pyx * Split out ONNXModel into a subclass of RunModel * Added snpemodel/thneedmodel bindings * Removed modeld.cc * Fixed scons for macOS * Fixed sconscript * Added flag for thneedmodel * paths are now relative to openpilot root dir * Set cl kernel paths in SConscript * Set LD_PRELOAD=libthneed.so to fix ioctl interception * Run from root dir * A few more fixes * A few more minor fixes * Use C update_calibration for now to exactly match refs * Add nav_instructions input * Link driving_pyx.pyx with transformations * Checked python FirstOrderFilter against C++ FirstOrderFilter * Set process name to fix test_onroad * Revert changes to onnxmodel.cc * Fixed bad onnx_runner.py path in onnxmodel.cc * Import all constants from driving.h * logging -> cloudlog * pylint import-error suppressions no longer needed? * Loop in SConscript * Added parens * Bump modeld cpu usage in test_onroad * Get rid of use_nav * use config_realtime_process * error message from ioctl sniffer was messing up pyenv * cast distance_idx to int * Removed cloudlog.infos in model.run * Fixed rebase conflicts * Clean up driving.pxd/pyx * Fixed linter error old-commit-hash: 72a3c987c0d9de6a0cd7a02bba032ccd5e1efe43
2 years ago
if USE_THNEED:
from selfdrive.modeld.runners.thneedmodel_pyx import ThneedModel as ModelRunner
else:
from selfdrive.modeld.runners.onnxmodel_pyx import ONNXModel as ModelRunner
MODEL_PATH = str(Path(__file__).parent / f"models/supercombo.{'thneed' if USE_THNEED else 'onnx'}")
# NOTE: numpy matmuls don't seem to perfectly match eigen matmuls so the ref test fails, but we should switch to the np version after checking compare_runtime
# from common.transformations.orientation import rot_from_euler
# from common.transformations.model import medmodel_frame_from_calib_frame, sbigmodel_frame_from_calib_frame
# from common.transformations.camera import view_frame_from_device_frame, tici_fcam_intrinsics, tici_ecam_intrinsics
# calib_from_medmodel = np.linalg.inv(medmodel_frame_from_calib_frame[:, :3])
# calib_from_sbigmodel = np.linalg.inv(sbigmodel_frame_from_calib_frame[:, :3])
#
# def update_calibration(device_from_calib_euler: np.ndarray, wide_camera: bool, bigmodel_frame: bool) -> np.ndarray:
# cam_intrinsics = tici_ecam_intrinsics if wide_camera else tici_fcam_intrinsics
# calib_from_model = calib_from_sbigmodel if bigmodel_frame else calib_from_medmodel
# device_from_calib = rot_from_euler(device_from_calib_euler)
# camera_from_calib = cam_intrinsics @ view_frame_from_device_frame @ device_from_calib
# warp_matrix: np.ndarray = camera_from_calib @ calib_from_model
# return warp_matrix
class FrameMeta:
frame_id: int = 0
timestamp_sof: int = 0
timestamp_eof: int = 0
def __init__(self, vipc=None):
if vipc is not None:
self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof
class ModelState:
frame: ModelFrame
wide_frame: ModelFrame
inputs: Dict[str, np.ndarray]
output: np.ndarray
prev_desire: np.ndarray # for tracking the rising edge of the pulse
model: ModelRunner
def __init__(self, context: CLContext):
self.frame = ModelFrame(context)
self.wide_frame = ModelFrame(context)
self.prev_desire = np.zeros(DESIRE_LEN, dtype=np.float32)
self.output = np.zeros(NET_OUTPUT_SIZE, dtype=np.float32)
self.inputs = {
'desire_pulse': np.zeros(DESIRE_LEN * (HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'nav_features': np.zeros(NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32),
'feature_buffer': np.zeros(HISTORY_BUFFER_LEN * FEATURE_LEN, dtype=np.float32),
}
self.model = ModelRunner(MODEL_PATH, self.output, Runtime.GPU, False, context)
self.model.addInput("input_imgs", None)
self.model.addInput("big_input_imgs", None)
for k,v in self.inputs.items():
self.model.addInput(k, v)
def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[np.ndarray]:
# Model decides when action is completed, so desire input is just a pulse triggered on rising edge
inputs['desire_pulse'][0] = 0
self.inputs['desire_pulse'][:-DESIRE_LEN] = self.inputs['desire_pulse'][DESIRE_LEN:]
self.inputs['desire_pulse'][-DESIRE_LEN:] = np.where(inputs['desire_pulse'] - self.prev_desire > .99, inputs['desire_pulse'], 0)
self.prev_desire[:] = inputs['desire_pulse']
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
self.inputs['nav_features'][:] = inputs['nav_features']
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
# self.inputs['driving_style'][:] = inputs['driving_style']
# if getCLBuffer is not None, frame will be None
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
if wbuf is not None:
self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
if prepare_only:
return None
self.model.execute()
self.inputs['feature_buffer'][:-FEATURE_LEN] = self.inputs['feature_buffer'][FEATURE_LEN:]
self.inputs['feature_buffer'][-FEATURE_LEN:] = self.output[OUTPUT_SIZE:OUTPUT_SIZE+FEATURE_LEN]
return self.output
def main():
cloudlog.bind(daemon="selfdrive.modeld.modeld")
setproctitle("selfdrive.modeld.modeld")
if not PC:
config_realtime_process(7, 54)
cl_context = CLContext()
model = ModelState(cl_context)
cloudlog.warning("models loaded, modeld starting")
# visionipc clients
while True:
available_streams = VisionIpcClient.available_streams("camerad", block=False)
if available_streams:
use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams
main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams
break
time.sleep(.1)
vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD
vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context)
vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context)
cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}")
while not vipc_client_main.connect(False):
time.sleep(0.1)
while not vipc_client_extra.connect(False):
time.sleep(0.1)
cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})")
if use_extra_client:
cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})")
# messaging
pm = PubMaster(["modelV2", "cameraOdometry"])
sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"])
state = PublishState()
params = Params()
# setup filter to track dropped frames
frame_dropped_filter = FirstOrderFilter(0., 10., 1. / MODEL_FREQ)
frame_id = 0
last_vipc_frame_id = 0
run_count = 0
# last = 0.0
model_transform_main = np.zeros((3, 3), dtype=np.float32)
model_transform_extra = np.zeros((3, 3), dtype=np.float32)
live_calib_seen = False
driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32)
nav_features = np.zeros(NAV_FEATURE_LEN, dtype=np.float32)
nav_instructions = np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32)
buf_main, buf_extra = None, None
meta_main = FrameMeta()
meta_extra = FrameMeta()
while True:
# Keep receiving frames until we are at least 1 frame ahead of previous extra frame
while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
buf_main = vipc_client_main.recv()
meta_main = FrameMeta(vipc_client_main)
if buf_main is None:
break
if buf_main is None:
cloudlog.error("vipc_client_main no frame")
continue
if use_extra_client:
# Keep receiving extra frames until frame id matches main camera
while True:
buf_extra = vipc_client_extra.recv()
meta_extra = FrameMeta(vipc_client_extra)
if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
break
if buf_extra is None:
cloudlog.error("vipc_client_extra no frame")
continue
if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000:
cloudlog.error("frames out of sync! main: {} ({:.5f}), extra: {} ({:.5f})".format(
meta_main.frame_id, meta_main.timestamp_sof / 1e9,
meta_extra.frame_id, meta_extra.timestamp_sof / 1e9))
else:
# Use single camera
buf_extra = buf_main
meta_extra = meta_main
# TODO: path planner timeout?
sm.update(0)
desire = sm["lateralPlan"].desire.raw
is_rhd = sm["driverMonitoringState"].isRHD
frame_id = sm["roadCameraState"].frameId
if sm.updated["liveCalibration"]:
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
model_transform_main = update_calibration(device_from_calib_euler, main_wide_camera, False)
model_transform_extra = update_calibration(device_from_calib_euler, True, True)
live_calib_seen = True
traffic_convention = np.zeros(2)
traffic_convention[int(is_rhd)] = 1
vec_desire = np.zeros(DESIRE_LEN, dtype=np.float32)
if desire >= 0 and desire < DESIRE_LEN:
vec_desire[desire] = 1
# Enable/disable nav features
timestamp_llk = sm["navModel"].locationMonoTime
nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9)
nav_enabled = nav_valid and params.get_bool("ExperimentalMode")
if not nav_enabled:
nav_features[:] = 0
nav_instructions[:] = 0
if nav_enabled and sm.updated["navModel"]:
nav_features = np.array(sm["navModel"].features)
if nav_enabled and sm.updated["navInstruction"]:
nav_instructions[:] = 0
for maneuver in sm["navInstruction"].allManeuvers:
distance_idx = 25 + int(maneuver.distance / 20)
direction_idx = 0
if maneuver.modifier in ("left", "slight left", "sharp left"):
direction_idx = 1
if maneuver.modifier in ("right", "slight right", "sharp right"):
direction_idx = 2
if 0 <= distance_idx < 50:
nav_instructions[distance_idx*3 + direction_idx] = 1
# tracked dropped frames
vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
if run_count < 10: # let frame drops warm up
frame_dropped_filter.x = 0.
frames_dropped = 0.
run_count = run_count + 1
frame_drop_ratio = frames_dropped / (1 + frames_dropped)
prepare_only = vipc_dropped_frames > 0
if prepare_only:
cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames")
inputs:Dict[str, np.ndarray] = {
'desire_pulse': vec_desire,
'traffic_convention': traffic_convention,
'driving_style': driving_style,
'nav_features': nav_features,
'nav_instructions': nav_instructions}
mt1 = time.perf_counter()
model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)
mt2 = time.perf_counter()
model_execution_time = mt2 - mt1
if model_output is not None:
pm.send("modelV2", create_model_msg(model_output, state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio,
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen))
pm.send("cameraOdometry", create_pose_msg(model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen))
# print("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f" %
# ((mt2 - mt1)*1000, (mt1 - last)*1000, meta_extra.frame_id, frame_id, frame_drop_ratio))
# last = mt1
last_vipc_frame_id = meta_main.frame_id
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
sys.exit()