openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

182 lines
7.9 KiB

#!/usr/bin/env python3
import os
import zmq
import numpy as np
from bisect import bisect_right
import cereal.messaging as messaging
from selfdrive.swaglog import cloudlog
from common.transformations.orientation import rotations_from_quats, ecef_euler_from_ned, euler2quat, ned_euler_from_ecef, quat2euler
import common.transformations.coordinates as coord
from selfdrive.locationd.kalman.live_kf import LiveKalman, States, inital_x, initial_P_diag
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
os.environ["OMP_NUM_THREADS"] = "1"
class Localizer():
def __init__(self, disabled_logs=[], dog=None):
self.kf = LiveKalman()
self.reset_kalman()
self.max_age = .2 # seconds
self.disabled_logs = disabled_logs
self.week = None
def liveLocationMsg(self, time):
fix = messaging.log.LiveLocationData.new_message()
predicted_state = self.kf.x
fix_ecef = predicted_state[States.ECEF_POS]
fix_pos_geo = coord.ecef2geodetic(fix_ecef)
fix.lat = float(fix_pos_geo[0])
fix.lon = float(fix_pos_geo[1])
fix.alt = float(fix_pos_geo[2])
fix.speed = float(np.linalg.norm(predicted_state[States.ECEF_VELOCITY]))
orientation_ned_euler = ned_euler_from_ecef(fix_ecef, quat2euler(predicted_state[States.ECEF_ORIENTATION]))
fix.roll = float(orientation_ned_euler[0]*180/np.pi)
fix.pitch = float(orientation_ned_euler[1]*180/np.pi)
fix.heading = float(orientation_ned_euler[2]*180/np.pi)
fix.gyro = [float(predicted_state[10]), float(predicted_state[11]), float(predicted_state[12])]
fix.accel = [float(predicted_state[19]), float(predicted_state[20]), float(predicted_state[21])]
local_vel = rotations_from_quats(predicted_state[States.ECEF_ORIENTATION]).T.dot(predicted_state[States.ECEF_VELOCITY])
fix.pitchCalibration = float((np.arctan2(local_vel[2], local_vel[0]))*180/np.pi)
fix.yawCalibration = float((np.arctan2(local_vel[1], local_vel[0]))*180/np.pi)
#fix.imuFrame = [(180/np.pi)*float(predicted_state[23]), (180/np.pi)*float(predicted_state[24]), (180/np.pi)*float(predicted_state[25])]
return fix
def update_kalman(self, time, kind, meas):
idx = bisect_right([x[0] for x in self.observation_buffer], time)
self.observation_buffer.insert(idx, (time, kind, meas))
while self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
if self.filter_ready:
self.kf.predict_and_observe(*self.observation_buffer.pop(0))
else:
self.observation_buffer.pop(0)
def handle_gps(self, log, current_time):
self.converter = coord.LocalCoord.from_geodetic([log.gpsLocationExternal.latitude, log.gpsLocationExternal.longitude, log.gpsLocationExternal.altitude])
fix_ecef = self.converter.ned2ecef([0,0,0])
# TODO initing with bad bearing not allowed, maybe not bad?
if not self.filter_ready and log.gpsLocationExternal.speed > 5:
self.filter_ready = True
initial_ecef = fix_ecef
gps_bearing = log.gpsLocationExternal.bearing*(np.pi/180)
initial_pose_ecef = ecef_euler_from_ned(initial_ecef, [0, 0, gps_bearing])
initial_pose_ecef_quat = euler2quat(initial_pose_ecef)
gps_speed = log.gpsLocationExternal.speed
quat_uncertainty = 0.2**2
initial_pose_ecef_quat = euler2quat(initial_pose_ecef)
initial_state = inital_x
initial_covs_diag = initial_P_diag
initial_state[States.ECEF_POS] = initial_ecef
initial_state[States.ECEF_ORIENTATION] = initial_pose_ecef_quat
initial_state[States.ECEF_VELOCITY] = rotations_from_quats(initial_pose_ecef_quat).dot(np.array([gps_speed, 0, 0]))
initial_covs_diag[States.ECEF_POS_ERR] = 10**2
initial_covs_diag[States.ECEF_ORIENTATION_ERR] = quat_uncertainty
initial_covs_diag[States.ECEF_VELOCITY_ERR] = 1**2
self.kf.init_state(initial_state, covs=np.diag(initial_covs_diag), filter_time=current_time)
print("Filter initialized")
elif self.filter_ready:
self.update_kalman(current_time, ObservationKind.ECEF_POS, fix_ecef)
gps_est_error = np.sqrt((self.kf.x[0] - fix_ecef[0])**2 +
(self.kf.x[1] - fix_ecef[1])**2 +
(self.kf.x[2] - fix_ecef[2])**2)
if gps_est_error > 50:
cloudlog.info("Locationd vs ubloxLocation difference too large, kalman reset")
self.reset_kalman()
def handle_car_state(self, log, current_time):
self.speed_counter += 1
if self.speed_counter % 5==0:
self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, log.carState.vEgo)
if log.carState.vEgo == 0:
self.update_kalman(current_time, ObservationKind.NO_ROT, [0, 0, 0])
def handle_cam_odo(self, log, current_time):
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_ROTATION, np.concatenate([log.cameraOdometry.rot,
log.cameraOdometry.rotStd]))
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_TRANSLATION, np.concatenate([log.cameraOdometry.trans,
log.cameraOdometry.transStd]))
def handle_sensors(self, log, current_time):
for sensor_reading in log.sensorEvents:
# TODO does not yet account for double sensor readings in the log
if sensor_reading.type == 4:
self.gyro_counter += 1
if True or self.gyro_counter % 5==0:
if max(abs(self.kf.x[States.IMU_OFFSET])) > 0.07:
print('imu frame angles exceeded, correcting')
self.update_kalman(current_time, ObservationKind.IMU_FRAME, [0, 0, 0])
self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-sensor_reading.gyro.v[2], -sensor_reading.gyro.v[1], -sensor_reading.gyro.v[0]])
if sensor_reading.type == 1:
self.acc_counter += 1
if True or self.acc_counter % 5==0:
self.update_kalman(current_time, ObservationKind.PHONE_ACCEL, [-sensor_reading.acceleration.v[2], -sensor_reading.acceleration.v[1], -sensor_reading.acceleration.v[0]])
def handle_log(self, log):
current_time = 1e-9*log.logMonoTime
typ = log.which
if typ in self.disabled_logs:
return
if typ == "sensorEvents":
self.handle_sensors(log, current_time)
elif typ == "gpsLocationExternal":
self.handle_gps(log, current_time)
elif typ == "carState":
self.handle_car_state(log, current_time)
elif typ == "cameraOdometry":
self.handle_cam_odo(log, current_time)
def reset_kalman(self):
self.filter_time = None
self.filter_ready = False
self.observation_buffer = []
self.converter = None
self.gyro_counter = 0
self.acc_counter = 0
self.speed_counter = 0
def locationd_thread(gctx, addr, disabled_logs=[]):
poller = zmq.Poller()
#carstate = messaging.sub_sock('carState', poller, addr=addr, conflate=True)
gpsLocationExternal = messaging.sub_sock('gpsLocationExternal', poller, addr=addr, conflate=True)
sensorEvents = messaging.sub_sock('sensorEvents', poller, addr=addr, conflate=True)
cameraOdometry = messaging.sub_sock('cameraOdometry', poller, addr=addr, conflate=True)
liveLocation = messaging.pub_sock('liveLocation')
localizer = Localizer(disabled_logs=disabled_logs)
print("init done")
# buffer with all the messages that still need to be input into the kalman
while 1:
polld = poller.poll(timeout=1000)
for sock, mode in polld:
if mode != zmq.POLLIN:
continue
logs = messaging.drain_sock(sock)
for log in logs:
localizer.handle_log(log)
if localizer.filter_ready and log.which == 'ubloxGnss':
msg = messaging.new_message()
msg.logMonoTime = log.logMonoTime
msg.init('liveLocation')
msg.liveLocation = localizer.liveLocationMsg(log.logMonoTime*1e-9)
liveLocation.send(msg.to_bytes())
def main(gctx=None, addr="127.0.0.1"):
locationd_thread(gctx, addr)
if __name__ == "__main__":
main()