openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

53 lines
1.5 KiB

1 month ago
#!/usr/bin/env python
import os
import unittest
import numpy as np
if 'IMAGE' not in os.environ:
os.environ['IMAGE'] = '2'
os.environ['GPU'] = '1'
os.environ['OPT'] = '2'
from tinygrad.tensor import Tensor
from tinygrad.nn import Conv2d
Tensor.no_grad = True
class TestImage(unittest.TestCase):
def test_create_image(self):
t = Tensor.ones(128, 128, 1)
t = t.reshape(128, 32, 4) + 3
t.realize()
np.testing.assert_array_equal(t.numpy(), np.ones((128,32,4))*4)
def test_sum_image(self):
t1 = Tensor.ones(16, 16, 1).reshape(16, 4, 4) + 3
t1.realize()
t1 = t1.sum()
t1.realize()
assert t1.numpy() == 16*4*4*4, f"got {t1.numpy()}"
def test_add_image(self):
t1 = Tensor.ones(16, 16, 1).reshape(16, 4, 4) + 3
t2 = Tensor.ones(16, 16, 1).reshape(16, 4, 4) + 4
t1.realize()
t2.realize()
t3 = t1 + t2
t3.realize()
np.testing.assert_array_equal(t3.numpy(), np.ones((16,4,4))*9)
def test_padded_conv(self):
bs, in_chans, out_chans = 1,12,32
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None, padding=1)
tiny_dat = Tensor.ones(bs, 12, 64, 128)
tiny_conv(tiny_dat).realize()
def test_op_conv(self):
bs, in_chans, out_chans = 1,12,32
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None, padding=1)
tiny_dconv = Conv2d(out_chans, out_chans, 1, bias=None, padding=0)
tiny_dat = Tensor.ones(bs, 12, 64, 128)
p2 = tiny_conv(tiny_dat).relu()
p2 = tiny_dconv(p2)
p2.realize()
if __name__ == '__main__':
unittest.main()