You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					709 lines
				
				22 KiB
			
		
		
			
		
	
	
					709 lines
				
				22 KiB
			| 
								 
											2 years ago
										 
									 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Copyright (c) The acados authors.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# This file is part of acados.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# The 2-Clause BSD License
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								# modification, are permitted provided that the following conditions are met:
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# 1. Redistributions of source code must retain the above copyright notice,
							 | 
						||
| 
								 | 
							
								# this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# 2. Redistributions in binary form must reproduce the above copyright notice,
							 | 
						||
| 
								 | 
							
								# this list of conditions and the following disclaimer in the documentation
							 | 
						||
| 
								 | 
							
								# and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
							 | 
						||
| 
								 | 
							
								# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
							 | 
						||
| 
								 | 
							
								# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
							 | 
						||
| 
								 | 
							
								# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
							 | 
						||
| 
								 | 
							
								# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
							 | 
						||
| 
								 | 
							
								# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
							 | 
						||
| 
								 | 
							
								# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
							 | 
						||
| 
								 | 
							
								# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
							 | 
						||
| 
								 | 
							
								# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
							 | 
						||
| 
								 | 
							
								# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
							 | 
						||
| 
								 | 
							
								# POSSIBILITY OF SUCH DAMAGE.;
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import os
							 | 
						||
| 
								 | 
							
								import casadi as ca
							 | 
						||
| 
								 | 
							
								from .utils import is_empty, casadi_length
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_casadi_symbol(x):
							 | 
						||
| 
								 | 
							
								    if isinstance(x, ca.MX):
							 | 
						||
| 
								 | 
							
								        return ca.MX.sym
							 | 
						||
| 
								 | 
							
								    elif isinstance(x, ca.SX):
							 | 
						||
| 
								 | 
							
								        return ca.SX.sym
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        raise TypeError("Expected casadi SX or MX.")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								################
							 | 
						||
| 
								 | 
							
								# Dynamics
							 | 
						||
| 
								 | 
							
								################
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_discrete_dynamics( model, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # load model
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    phi = model.disc_dyn_expr
							 | 
						||
| 
								 | 
							
								    model_name = model.name
							 | 
						||
| 
								 | 
							
								    nx = casadi_length(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								    # assume nx1 = nx !!!
							 | 
						||
| 
								 | 
							
								    lam = symbol('lam', nx, 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # generate jacobians
							 | 
						||
| 
								 | 
							
								    ux = ca.vertcat(u,x)
							 | 
						||
| 
								 | 
							
								    jac_ux = ca.jacobian(phi, ux)
							 | 
						||
| 
								 | 
							
								    # generate adjoint
							 | 
						||
| 
								 | 
							
								    adj_ux = ca.jtimes(phi, ux, lam, True)
							 | 
						||
| 
								 | 
							
								    # generate hessian
							 | 
						||
| 
								 | 
							
								    hess_ux = ca.jacobian(adj_ux, ux)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(model_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(model_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(model_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up & generate ca.Functions
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_dyn_disc_phi_fun'
							 | 
						||
| 
								 | 
							
								    phi_fun = ca.Function(fun_name, [x, u, p], [phi])
							 | 
						||
| 
								 | 
							
								    phi_fun.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_dyn_disc_phi_fun_jac'
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_ut_xt = ca.Function(fun_name, [x, u, p], [phi, jac_ux.T])
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_ut_xt.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_dyn_disc_phi_fun_jac_hess'
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_ut_xt_hess = ca.Function(fun_name, [x, u, lam, p], [phi, jac_ux.T, hess_ux])
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_ut_xt_hess.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_explicit_ode( model, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    generate_hess = opts["generate_hess"]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # load model
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    f_expl = model.f_expl_expr
							 | 
						||
| 
								 | 
							
								    model_name = model.name
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ## get model dimensions
							 | 
						||
| 
								 | 
							
								    nx = x.size()[0]
							 | 
						||
| 
								 | 
							
								    nu = u.size()[0]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ## set up functions to be exported
							 | 
						||
| 
								 | 
							
								    Sx = symbol('Sx', nx, nx)
							 | 
						||
| 
								 | 
							
								    Sp = symbol('Sp', nx, nu)
							 | 
						||
| 
								 | 
							
								    lambdaX = symbol('lambdaX', nx, 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_expl_ode_fun'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ## Set up functions
							 | 
						||
| 
								 | 
							
								    expl_ode_fun = ca.Function(fun_name, [x, u, p], [f_expl])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    vdeX = ca.jtimes(f_expl,x,Sx)
							 | 
						||
| 
								 | 
							
								    vdeP = ca.jacobian(f_expl,u) + ca.jtimes(f_expl,x,Sp)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_expl_vde_forw'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    expl_vde_forw = ca.Function(fun_name, [x, Sx, Sp, u, p], [f_expl, vdeX, vdeP])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    adj = ca.jtimes(f_expl, ca.vertcat(x, u), lambdaX, True)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_expl_vde_adj'
							 | 
						||
| 
								 | 
							
								    expl_vde_adj = ca.Function(fun_name, [x, lambdaX, u, p], [adj])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if generate_hess:
							 | 
						||
| 
								 | 
							
								        S_forw = ca.vertcat(ca.horzcat(Sx, Sp), ca.horzcat(ca.DM.zeros(nu,nx), ca.DM.eye(nu)))
							 | 
						||
| 
								 | 
							
								        hess = ca.mtimes(ca.transpose(S_forw),ca.jtimes(adj, ca.vertcat(x,u), S_forw))
							 | 
						||
| 
								 | 
							
								        hess2 = []
							 | 
						||
| 
								 | 
							
								        for j in range(nx+nu):
							 | 
						||
| 
								 | 
							
								            for i in range(j,nx+nu):
							 | 
						||
| 
								 | 
							
								                hess2 = ca.vertcat(hess2, hess[i,j])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        fun_name = model_name + '_expl_ode_hess'
							 | 
						||
| 
								 | 
							
								        expl_ode_hess = ca.Function(fun_name, [x, Sx, Sp, lambdaX, u, p], [adj, hess2])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(model_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(model_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(model_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # generate C code
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_expl_ode_fun'
							 | 
						||
| 
								 | 
							
								    expl_ode_fun.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_expl_vde_forw'
							 | 
						||
| 
								 | 
							
								    expl_vde_forw.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_expl_vde_adj'
							 | 
						||
| 
								 | 
							
								    expl_vde_adj.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if generate_hess:
							 | 
						||
| 
								 | 
							
								        fun_name = model_name + '_expl_ode_hess'
							 | 
						||
| 
								 | 
							
								        expl_ode_hess.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_implicit_ode( model, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # load model
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    xdot = model.xdot
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								    z = model.z
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    f_impl = model.f_impl_expr
							 | 
						||
| 
								 | 
							
								    model_name = model.name
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # get model dimensions
							 | 
						||
| 
								 | 
							
								    nx = casadi_length(x)
							 | 
						||
| 
								 | 
							
								    nz = casadi_length(z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # generate jacobians
							 | 
						||
| 
								 | 
							
								    jac_x       = ca.jacobian(f_impl, x)
							 | 
						||
| 
								 | 
							
								    jac_xdot    = ca.jacobian(f_impl, xdot)
							 | 
						||
| 
								 | 
							
								    jac_u       = ca.jacobian(f_impl, u)
							 | 
						||
| 
								 | 
							
								    jac_z       = ca.jacobian(f_impl, z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Set up functions
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun_jac_x_xdot_z'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun_jac_x_xdot_z = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl, jac_x, jac_xdot, jac_z])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u_z'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun_jac_x_xdot_u_z = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl, jac_x, jac_xdot, jac_u, jac_z])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun_jac_x_xdot_u = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl, jac_x, jac_xdot, jac_u])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_jac_x_xdot_u_z'
							 | 
						||
| 
								 | 
							
								    impl_dae_jac_x_xdot_u_z = ca.Function(fun_name, [x, xdot, u, z, p], [jac_x, jac_xdot, jac_u, jac_z])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if opts["generate_hess"]:
							 | 
						||
| 
								 | 
							
								        x_xdot_z_u = ca.vertcat(x, xdot, z, u)
							 | 
						||
| 
								 | 
							
								        symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								        multiplier = symbol('multiplier', nx + nz)
							 | 
						||
| 
								 | 
							
								        ADJ = ca.jtimes(f_impl, x_xdot_z_u, multiplier, True)
							 | 
						||
| 
								 | 
							
								        HESS = ca.jacobian(ADJ, x_xdot_z_u)
							 | 
						||
| 
								 | 
							
								        fun_name = model_name + '_impl_dae_hess'
							 | 
						||
| 
								 | 
							
								        impl_dae_hess = ca.Function(fun_name, [x, xdot, u, z, multiplier, p], [HESS])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(model_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(model_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(model_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # generate C code
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun_jac_x_xdot_z'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun_jac_x_xdot_z.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_jac_x_xdot_u_z'
							 | 
						||
| 
								 | 
							
								    impl_dae_jac_x_xdot_u_z.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u_z'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun_jac_x_xdot_u_z.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u'
							 | 
						||
| 
								 | 
							
								    impl_dae_fun_jac_x_xdot_u.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if opts["generate_hess"]:
							 | 
						||
| 
								 | 
							
								        fun_name = model_name + '_impl_dae_hess'
							 | 
						||
| 
								 | 
							
								        impl_dae_hess.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_gnsf( model, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    model_name = model.name
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(model_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(model_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(model_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # obtain gnsf dimensions
							 | 
						||
| 
								 | 
							
								    get_matrices_fun = model.get_matrices_fun
							 | 
						||
| 
								 | 
							
								    phi_fun = model.phi_fun
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    size_gnsf_A = get_matrices_fun.size_out(0)
							 | 
						||
| 
								 | 
							
								    gnsf_nx1 = size_gnsf_A[1]
							 | 
						||
| 
								 | 
							
								    gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
							 | 
						||
| 
								 | 
							
								    gnsf_nuhat = max(phi_fun.size_in(1))
							 | 
						||
| 
								 | 
							
								    gnsf_ny = max(phi_fun.size_in(0))
							 | 
						||
| 
								 | 
							
								    gnsf_nout = max(phi_fun.size_out(0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up expressions
							 | 
						||
| 
								 | 
							
								    # if the model uses ca.MX because of cost/constraints
							 | 
						||
| 
								 | 
							
								    # the DAE can be exported as ca.SX -> detect GNSF in Matlab
							 | 
						||
| 
								 | 
							
								    # -> evaluated ca.SX GNSF functions with ca.MX.
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(u)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = symbol("y", gnsf_ny, 1)
							 | 
						||
| 
								 | 
							
								    uhat = symbol("uhat", gnsf_nuhat, 1)
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    x1 = symbol("gnsf_x1", gnsf_nx1, 1)
							 | 
						||
| 
								 | 
							
								    x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1)
							 | 
						||
| 
								 | 
							
								    z1 = symbol("gnsf_z1", gnsf_nz1, 1)
							 | 
						||
| 
								 | 
							
								    dummy = symbol("gnsf_dummy", 1, 1)
							 | 
						||
| 
								 | 
							
								    empty_var = symbol("gnsf_empty_var", 0, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ## generate C code
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_phi_fun'
							 | 
						||
| 
								 | 
							
								    phi_fun_ = ca.Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)])
							 | 
						||
| 
								 | 
							
								    phi_fun_.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_phi_fun_jac_y'
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_y = model.phi_fun_jac_y
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_y_ = ca.Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p))
							 | 
						||
| 
								 | 
							
								    phi_fun_jac_y_.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_phi_jac_y_uhat'
							 | 
						||
| 
								 | 
							
								    phi_jac_y_uhat = model.phi_jac_y_uhat
							 | 
						||
| 
								 | 
							
								    phi_jac_y_uhat_ = ca.Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p))
							 | 
						||
| 
								 | 
							
								    phi_jac_y_uhat_.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz'
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # avoid codegeneration issue
							 | 
						||
| 
								 | 
							
								    if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval):
							 | 
						||
| 
								 | 
							
								        f_lo_fun_jac_x1k1uz_eval = [empty_var]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz_ = ca.Function(fun_name, [x1, x1dot, z1, u, p],
							 | 
						||
| 
								 | 
							
								                 f_lo_fun_jac_x1k1uz_eval)
							 | 
						||
| 
								 | 
							
								    f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fun_name = model_name + '_gnsf_get_matrices_fun'
							 | 
						||
| 
								 | 
							
								    get_matrices_fun_ = ca.Function(fun_name, [dummy], get_matrices_fun(1))
							 | 
						||
| 
								 | 
							
								    get_matrices_fun_.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # remove fields for json dump
							 | 
						||
| 
								 | 
							
								    del model.phi_fun
							 | 
						||
| 
								 | 
							
								    del model.phi_fun_jac_y
							 | 
						||
| 
								 | 
							
								    del model.phi_jac_y_uhat
							 | 
						||
| 
								 | 
							
								    del model.f_lo_fun_jac_x1k1uz
							 | 
						||
| 
								 | 
							
								    del model.get_matrices_fun
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								################
							 | 
						||
| 
								 | 
							
								# Cost
							 | 
						||
| 
								 | 
							
								################
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_external_cost(model, stage_type, opts):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								    z = model.z
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if stage_type == 'terminal':
							 | 
						||
| 
								 | 
							
								        suffix_name = "_cost_ext_cost_e_fun"
							 | 
						||
| 
								 | 
							
								        suffix_name_hess = "_cost_ext_cost_e_fun_jac_hess"
							 | 
						||
| 
								 | 
							
								        suffix_name_jac = "_cost_ext_cost_e_fun_jac"
							 | 
						||
| 
								 | 
							
								        ext_cost = model.cost_expr_ext_cost_e
							 | 
						||
| 
								 | 
							
								        custom_hess = model.cost_expr_ext_cost_custom_hess_e
							 | 
						||
| 
								 | 
							
								        # Last stage cannot depend on u and z
							 | 
						||
| 
								 | 
							
								        u = symbol("u", 0, 0)
							 | 
						||
| 
								 | 
							
								        z = symbol("z", 0, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif stage_type == 'path':
							 | 
						||
| 
								 | 
							
								        suffix_name = "_cost_ext_cost_fun"
							 | 
						||
| 
								 | 
							
								        suffix_name_hess = "_cost_ext_cost_fun_jac_hess"
							 | 
						||
| 
								 | 
							
								        suffix_name_jac = "_cost_ext_cost_fun_jac"
							 | 
						||
| 
								 | 
							
								        ext_cost = model.cost_expr_ext_cost
							 | 
						||
| 
								 | 
							
								        custom_hess = model.cost_expr_ext_cost_custom_hess
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif stage_type == 'initial':
							 | 
						||
| 
								 | 
							
								        suffix_name = "_cost_ext_cost_0_fun"
							 | 
						||
| 
								 | 
							
								        suffix_name_hess = "_cost_ext_cost_0_fun_jac_hess"
							 | 
						||
| 
								 | 
							
								        suffix_name_jac = "_cost_ext_cost_0_fun_jac"
							 | 
						||
| 
								 | 
							
								        ext_cost = model.cost_expr_ext_cost_0
							 | 
						||
| 
								 | 
							
								        custom_hess = model.cost_expr_ext_cost_custom_hess_0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    nunx = x.shape[0] + u.shape[0]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up functions to be exported
							 | 
						||
| 
								 | 
							
								    fun_name = model.name + suffix_name
							 | 
						||
| 
								 | 
							
								    fun_name_hess = model.name + suffix_name_hess
							 | 
						||
| 
								 | 
							
								    fun_name_jac = model.name + suffix_name_jac
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # generate expression for full gradient and Hessian
							 | 
						||
| 
								 | 
							
								    hess_uxz, grad_uxz = ca.hessian(ext_cost, ca.vertcat(u, x, z))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    hess_ux = hess_uxz[:nunx, :nunx]
							 | 
						||
| 
								 | 
							
								    hess_z = hess_uxz[nunx:, nunx:]
							 | 
						||
| 
								 | 
							
								    hess_z_ux = hess_uxz[nunx:, :nunx]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if custom_hess is not None:
							 | 
						||
| 
								 | 
							
								        hess_ux = custom_hess
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ext_cost_fun = ca.Function(fun_name, [x, u, z, p], [ext_cost])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ext_cost_fun_jac_hess = ca.Function(
							 | 
						||
| 
								 | 
							
								        fun_name_hess, [x, u, z, p], [ext_cost, grad_uxz, hess_ux, hess_z, hess_z_ux]
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    ext_cost_fun_jac = ca.Function(
							 | 
						||
| 
								 | 
							
								        fun_name_jac, [x, u, z, p], [ext_cost, grad_uxz]
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    cost_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_cost'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(cost_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(cost_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(cost_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ext_cost_fun.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								    ext_cost_fun_jac_hess.generate(fun_name_hess, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								    ext_cost_fun_jac.generate(fun_name_jac, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_nls_cost( model, cost_name, stage_type, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    z = model.z
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								    u = model.u
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if stage_type == 'terminal':
							 | 
						||
| 
								 | 
							
								        middle_name = '_cost_y_e'
							 | 
						||
| 
								 | 
							
								        u = symbol('u', 0, 0)
							 | 
						||
| 
								 | 
							
								        y_expr = model.cost_y_expr_e
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif stage_type == 'initial':
							 | 
						||
| 
								 | 
							
								        middle_name = '_cost_y_0'
							 | 
						||
| 
								 | 
							
								        y_expr = model.cost_y_expr_0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif stage_type == 'path':
							 | 
						||
| 
								 | 
							
								        middle_name = '_cost_y'
							 | 
						||
| 
								 | 
							
								        y_expr = model.cost_y_expr
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    cost_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_cost'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(cost_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(cost_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(cost_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up expressions
							 | 
						||
| 
								 | 
							
								    cost_jac_expr = ca.transpose(ca.jacobian(y_expr, ca.vertcat(u, x)))
							 | 
						||
| 
								 | 
							
								    dy_dz = ca.jacobian(y_expr, z)
							 | 
						||
| 
								 | 
							
								    ny = casadi_length(y_expr)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = symbol('y', ny, 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y_adj = ca.jtimes(y_expr, ca.vertcat(u, x), y, True)
							 | 
						||
| 
								 | 
							
								    y_hess = ca.jacobian(y_adj, ca.vertcat(u, x))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ## generate C code
							 | 
						||
| 
								 | 
							
								    suffix_name = '_fun'
							 | 
						||
| 
								 | 
							
								    fun_name = cost_name + middle_name + suffix_name
							 | 
						||
| 
								 | 
							
								    y_fun = ca.Function( fun_name, [x, u, z, p], [ y_expr ])
							 | 
						||
| 
								 | 
							
								    y_fun.generate( fun_name, casadi_codegen_opts )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    suffix_name = '_fun_jac_ut_xt'
							 | 
						||
| 
								 | 
							
								    fun_name = cost_name + middle_name + suffix_name
							 | 
						||
| 
								 | 
							
								    y_fun_jac_ut_xt = ca.Function(fun_name, [x, u, z, p], [ y_expr, cost_jac_expr, dy_dz ])
							 | 
						||
| 
								 | 
							
								    y_fun_jac_ut_xt.generate( fun_name, casadi_codegen_opts )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    suffix_name = '_hess'
							 | 
						||
| 
								 | 
							
								    fun_name = cost_name + middle_name + suffix_name
							 | 
						||
| 
								 | 
							
								    y_hess = ca.Function(fun_name, [x, u, z, y, p], [ y_hess ])
							 | 
						||
| 
								 | 
							
								    y_hess.generate( fun_name, casadi_codegen_opts )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generate_c_code_conl_cost(model, cost_name, stage_type, opts):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    z = model.z
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if stage_type == 'terminal':
							 | 
						||
| 
								 | 
							
								        u = symbol('u', 0, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        yref = model.cost_r_in_psi_expr_e
							 | 
						||
| 
								 | 
							
								        inner_expr = model.cost_y_expr_e - yref
							 | 
						||
| 
								 | 
							
								        outer_expr = model.cost_psi_expr_e
							 | 
						||
| 
								 | 
							
								        res_expr = model.cost_r_in_psi_expr_e
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        suffix_name_fun = '_conl_cost_e_fun'
							 | 
						||
| 
								 | 
							
								        suffix_name_fun_jac_hess = '_conl_cost_e_fun_jac_hess'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        custom_hess = model.cost_conl_custom_outer_hess_e
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif stage_type == 'initial':
							 | 
						||
| 
								 | 
							
								        u = model.u
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        yref = model.cost_r_in_psi_expr_0
							 | 
						||
| 
								 | 
							
								        inner_expr = model.cost_y_expr_0 - yref
							 | 
						||
| 
								 | 
							
								        outer_expr = model.cost_psi_expr_0
							 | 
						||
| 
								 | 
							
								        res_expr = model.cost_r_in_psi_expr_0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        suffix_name_fun = '_conl_cost_0_fun'
							 | 
						||
| 
								 | 
							
								        suffix_name_fun_jac_hess = '_conl_cost_0_fun_jac_hess'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        custom_hess = model.cost_conl_custom_outer_hess_0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    elif stage_type == 'path':
							 | 
						||
| 
								 | 
							
								        u = model.u
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        yref = model.cost_r_in_psi_expr
							 | 
						||
| 
								 | 
							
								        inner_expr = model.cost_y_expr - yref
							 | 
						||
| 
								 | 
							
								        outer_expr = model.cost_psi_expr
							 | 
						||
| 
								 | 
							
								        res_expr = model.cost_r_in_psi_expr
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        suffix_name_fun = '_conl_cost_fun'
							 | 
						||
| 
								 | 
							
								        suffix_name_fun_jac_hess = '_conl_cost_fun_jac_hess'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        custom_hess = model.cost_conl_custom_outer_hess
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up function names
							 | 
						||
| 
								 | 
							
								    fun_name_cost_fun = model.name + suffix_name_fun
							 | 
						||
| 
								 | 
							
								    fun_name_cost_fun_jac_hess = model.name + suffix_name_fun_jac_hess
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up functions to be exported
							 | 
						||
| 
								 | 
							
								    outer_loss_fun = ca.Function('psi', [res_expr, p], [outer_expr])
							 | 
						||
| 
								 | 
							
								    cost_expr = outer_loss_fun(inner_expr, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    outer_loss_grad_fun = ca.Function('outer_loss_grad', [res_expr, p], [ca.jacobian(outer_expr, res_expr).T])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if custom_hess is None:
							 | 
						||
| 
								 | 
							
								        outer_hess_fun = ca.Function('inner_hess', [res_expr, p], [ca.hessian(outer_loss_fun(res_expr, p), res_expr)[0]])
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        outer_hess_fun = ca.Function('inner_hess', [res_expr, p], [custom_hess])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Jt_ux_expr = ca.jacobian(inner_expr, ca.vertcat(u, x)).T
							 | 
						||
| 
								 | 
							
								    Jt_z_expr = ca.jacobian(inner_expr, z).T
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    cost_fun = ca.Function(
							 | 
						||
| 
								 | 
							
								        fun_name_cost_fun,
							 | 
						||
| 
								 | 
							
								        [x, u, z, yref, p],
							 | 
						||
| 
								 | 
							
								        [cost_expr])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    cost_fun_jac_hess = ca.Function(
							 | 
						||
| 
								 | 
							
								        fun_name_cost_fun_jac_hess,
							 | 
						||
| 
								 | 
							
								        [x, u, z, yref, p],
							 | 
						||
| 
								 | 
							
								        [cost_expr, outer_loss_grad_fun(inner_expr, p), Jt_ux_expr, Jt_z_expr, outer_hess_fun(inner_expr, p)]
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    # change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    cost_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_cost'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(cost_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(cost_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(cost_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # generate C code
							 | 
						||
| 
								 | 
							
								    cost_fun.generate(fun_name_cost_fun, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								    cost_fun_jac_hess.generate(fun_name_cost_fun_jac_hess, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								################
							 | 
						||
| 
								 | 
							
								# Constraints
							 | 
						||
| 
								 | 
							
								################
							 | 
						||
| 
								 | 
							
								def generate_c_code_constraint( model, con_name, is_terminal, opts ):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # load constraint variables and expression
							 | 
						||
| 
								 | 
							
								    x = model.x
							 | 
						||
| 
								 | 
							
								    p = model.p
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    symbol = get_casadi_symbol(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if is_terminal:
							 | 
						||
| 
								 | 
							
								        con_h_expr = model.con_h_expr_e
							 | 
						||
| 
								 | 
							
								        con_phi_expr = model.con_phi_expr_e
							 | 
						||
| 
								 | 
							
								        # create dummy u, z
							 | 
						||
| 
								 | 
							
								        u = symbol('u', 0, 0)
							 | 
						||
| 
								 | 
							
								        z = symbol('z', 0, 0)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        con_h_expr = model.con_h_expr
							 | 
						||
| 
								 | 
							
								        con_phi_expr = model.con_phi_expr
							 | 
						||
| 
								 | 
							
								        u = model.u
							 | 
						||
| 
								 | 
							
								        z = model.z
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (not is_empty(con_h_expr)) and (not is_empty(con_phi_expr)):
							 | 
						||
| 
								 | 
							
								        raise Exception("acados: you can either have constraint_h, or constraint_phi, not both.")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (is_empty(con_h_expr) and is_empty(con_phi_expr)):
							 | 
						||
| 
								 | 
							
								        # both empty -> nothing to generate
							 | 
						||
| 
								 | 
							
								        return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if is_empty(con_h_expr):
							 | 
						||
| 
								 | 
							
								        constr_type = 'BGP'
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        constr_type = 'BGH'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if is_empty(p):
							 | 
						||
| 
								 | 
							
								        p = symbol('p', 0, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if is_empty(z):
							 | 
						||
| 
								 | 
							
								        z = symbol('z', 0, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if not (is_empty(con_h_expr)) and opts['generate_hess']:
							 | 
						||
| 
								 | 
							
								        # multipliers for hessian
							 | 
						||
| 
								 | 
							
								        nh = casadi_length(con_h_expr)
							 | 
						||
| 
								 | 
							
								        lam_h = symbol('lam_h', nh, 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # set up & change directory
							 | 
						||
| 
								 | 
							
								    cwd = os.getcwd()
							 | 
						||
| 
								 | 
							
								    constraints_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_constraints'))
							 | 
						||
| 
								 | 
							
								    if not os.path.exists(constraints_dir):
							 | 
						||
| 
								 | 
							
								        os.makedirs(constraints_dir)
							 | 
						||
| 
								 | 
							
								    os.chdir(constraints_dir)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # export casadi functions
							 | 
						||
| 
								 | 
							
								    if constr_type == 'BGH':
							 | 
						||
| 
								 | 
							
								        if is_terminal:
							 | 
						||
| 
								 | 
							
								            fun_name = con_name + '_constr_h_e_fun_jac_uxt_zt'
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            fun_name = con_name + '_constr_h_fun_jac_uxt_zt'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        jac_ux_t = ca.transpose(ca.jacobian(con_h_expr, ca.vertcat(u,x)))
							 | 
						||
| 
								 | 
							
								        jac_z_t = ca.jacobian(con_h_expr, z)
							 | 
						||
| 
								 | 
							
								        constraint_fun_jac_tran = ca.Function(fun_name, [x, u, z, p], \
							 | 
						||
| 
								 | 
							
								                [con_h_expr, jac_ux_t, jac_z_t])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        constraint_fun_jac_tran.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								        if opts['generate_hess']:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if is_terminal:
							 | 
						||
| 
								 | 
							
								                fun_name = con_name + '_constr_h_e_fun_jac_uxt_zt_hess'
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                fun_name = con_name + '_constr_h_fun_jac_uxt_zt_hess'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # adjoint
							 | 
						||
| 
								 | 
							
								            adj_ux = ca.jtimes(con_h_expr, ca.vertcat(u, x), lam_h, True)
							 | 
						||
| 
								 | 
							
								            # hessian
							 | 
						||
| 
								 | 
							
								            hess_ux = ca.jacobian(adj_ux, ca.vertcat(u, x))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            adj_z = ca.jtimes(con_h_expr, z, lam_h, True)
							 | 
						||
| 
								 | 
							
								            hess_z = ca.jacobian(adj_z, z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # set up functions
							 | 
						||
| 
								 | 
							
								            constraint_fun_jac_tran_hess = \
							 | 
						||
| 
								 | 
							
								                ca.Function(fun_name, [x, u, lam_h, z, p], \
							 | 
						||
| 
								 | 
							
								                    [con_h_expr, jac_ux_t, hess_ux, jac_z_t, hess_z])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # generate C code
							 | 
						||
| 
								 | 
							
								            constraint_fun_jac_tran_hess.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if is_terminal:
							 | 
						||
| 
								 | 
							
								            fun_name = con_name + '_constr_h_e_fun'
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            fun_name = con_name + '_constr_h_fun'
							 | 
						||
| 
								 | 
							
								        h_fun = ca.Function(fun_name, [x, u, z, p], [con_h_expr])
							 | 
						||
| 
								 | 
							
								        h_fun.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    else: # BGP constraint
							 | 
						||
| 
								 | 
							
								        if is_terminal:
							 | 
						||
| 
								 | 
							
								            fun_name = con_name + '_phi_e_constraint'
							 | 
						||
| 
								 | 
							
								            r = model.con_r_in_phi_e
							 | 
						||
| 
								 | 
							
								            con_r_expr = model.con_r_expr_e
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            fun_name = con_name + '_phi_constraint'
							 | 
						||
| 
								 | 
							
								            r = model.con_r_in_phi
							 | 
						||
| 
								 | 
							
								            con_r_expr = model.con_r_expr
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        nphi = casadi_length(con_phi_expr)
							 | 
						||
| 
								 | 
							
								        con_phi_expr_x_u_z = ca.substitute(con_phi_expr, r, con_r_expr)
							 | 
						||
| 
								 | 
							
								        phi_jac_u = ca.jacobian(con_phi_expr_x_u_z, u)
							 | 
						||
| 
								 | 
							
								        phi_jac_x = ca.jacobian(con_phi_expr_x_u_z, x)
							 | 
						||
| 
								 | 
							
								        phi_jac_z = ca.jacobian(con_phi_expr_x_u_z, z)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        hess = ca.hessian(con_phi_expr[0], r)[0]
							 | 
						||
| 
								 | 
							
								        for i in range(1, nphi):
							 | 
						||
| 
								 | 
							
								            hess = ca.vertcat(hess, ca.hessian(con_phi_expr[i], r)[0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        r_jac_u = ca.jacobian(con_r_expr, u)
							 | 
						||
| 
								 | 
							
								        r_jac_x = ca.jacobian(con_r_expr, x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        constraint_phi = \
							 | 
						||
| 
								 | 
							
								            ca.Function(fun_name, [x, u, z, p], \
							 | 
						||
| 
								 | 
							
								                [con_phi_expr_x_u_z, \
							 | 
						||
| 
								 | 
							
								                ca.vertcat(ca.transpose(phi_jac_u), ca.transpose(phi_jac_x)), \
							 | 
						||
| 
								 | 
							
								                ca.transpose(phi_jac_z), \
							 | 
						||
| 
								 | 
							
								                hess,
							 | 
						||
| 
								 | 
							
								                ca.vertcat(ca.transpose(r_jac_u), ca.transpose(r_jac_x))])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        constraint_phi.generate(fun_name, casadi_codegen_opts)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # change directory back
							 | 
						||
| 
								 | 
							
								    os.chdir(cwd)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return
							 | 
						||
| 
								 | 
							
								
							 |