You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
7.6 KiB
196 lines
7.6 KiB
2 days ago
|
import uuid
|
||
|
import threading
|
||
|
import numpy as np
|
||
|
from collections import deque
|
||
|
import dearpygui.dearpygui as dpg
|
||
|
from abc import ABC, abstractmethod
|
||
|
|
||
|
|
||
|
class ViewPanel(ABC):
|
||
|
"""Abstract base class for all view panels that can be displayed in a plot container"""
|
||
|
|
||
|
def __init__(self, panel_id: str = None):
|
||
|
self.panel_id = panel_id or str(uuid.uuid4())
|
||
|
self.title = "Untitled Panel"
|
||
|
|
||
|
@abstractmethod
|
||
|
def clear(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def create_ui(self, parent_tag: str):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def destroy_ui(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def get_panel_type(self) -> str:
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def update(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TimeSeriesPanel(ViewPanel):
|
||
|
def __init__(self, data_manager, playback_manager, worker_manager, panel_id: str | None = None):
|
||
|
super().__init__(panel_id)
|
||
|
self.data_manager = data_manager
|
||
|
self.playback_manager = playback_manager
|
||
|
self.worker_manager = worker_manager
|
||
|
self.title = "Time Series Plot"
|
||
|
self.plot_tag = f"plot_{self.panel_id}"
|
||
|
self.x_axis_tag = f"{self.plot_tag}_x_axis"
|
||
|
self.y_axis_tag = f"{self.plot_tag}_y_axis"
|
||
|
self.timeline_indicator_tag = f"{self.plot_tag}_timeline"
|
||
|
self._ui_created = False
|
||
|
self._series_data: dict[str, tuple[list, list]] = {}
|
||
|
self._last_plot_duration = 0
|
||
|
self._update_lock = threading.RLock()
|
||
|
self.results_deque: deque[tuple[str, list, list]] = deque()
|
||
|
self._new_data = False
|
||
|
|
||
|
def create_ui(self, parent_tag: str):
|
||
|
self.data_manager.add_observer(self.on_data_loaded)
|
||
|
with dpg.plot(height=-1, width=-1, tag=self.plot_tag, parent=parent_tag, drop_callback=self._on_series_drop, payload_type="TIMESERIES_PAYLOAD"):
|
||
|
dpg.add_plot_legend()
|
||
|
dpg.add_plot_axis(dpg.mvXAxis, no_label=True, tag=self.x_axis_tag)
|
||
|
dpg.add_plot_axis(dpg.mvYAxis, no_label=True, tag=self.y_axis_tag)
|
||
|
timeline_series_tag = dpg.add_inf_line_series(x=[0], label="Timeline", parent=self.y_axis_tag, tag=self.timeline_indicator_tag)
|
||
|
dpg.bind_item_theme(timeline_series_tag, "global_timeline_theme")
|
||
|
|
||
|
for series_path in list(self._series_data.keys()):
|
||
|
self.add_series(series_path)
|
||
|
self._ui_created = True
|
||
|
|
||
|
def update(self):
|
||
|
with self._update_lock:
|
||
|
if not self._ui_created:
|
||
|
return
|
||
|
|
||
|
if self._new_data: # handle new data in main thread
|
||
|
self._new_data = False
|
||
|
for series_path in list(self._series_data.keys()):
|
||
|
self.add_series(series_path, update=True)
|
||
|
|
||
|
while self.results_deque: # handle downsampled results in main thread
|
||
|
results = self.results_deque.popleft()
|
||
|
for series_path, downsampled_time, downsampled_values in results:
|
||
|
series_tag = f"series_{self.panel_id}_{series_path}"
|
||
|
if dpg.does_item_exist(series_tag):
|
||
|
dpg.set_value(series_tag, [downsampled_time, downsampled_values])
|
||
|
|
||
|
# update timeline
|
||
|
current_time_s = self.playback_manager.current_time_s
|
||
|
dpg.set_value(self.timeline_indicator_tag, [[current_time_s], [0]])
|
||
|
|
||
|
# update timeseries legend label
|
||
|
for series_path, (time_array, value_array) in self._series_data.items():
|
||
|
position = np.searchsorted(time_array, current_time_s, side='right') - 1
|
||
|
if position >= 0 and (current_time_s - time_array[position]) <= 1.0:
|
||
|
value = value_array[position]
|
||
|
formatted_value = f"{value:.5f}" if np.issubdtype(type(value), np.floating) else str(value)
|
||
|
series_tag = f"series_{self.panel_id}_{series_path}"
|
||
|
if dpg.does_item_exist(series_tag):
|
||
|
dpg.configure_item(series_tag, label=f"{series_path}: {formatted_value}")
|
||
|
|
||
|
# downsample if plot zoom changed significantly
|
||
|
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
|
||
|
if plot_duration > self._last_plot_duration * 2 or plot_duration < self._last_plot_duration * 0.5:
|
||
|
self._downsample_all_series(plot_duration)
|
||
|
|
||
|
def _downsample_all_series(self, plot_duration):
|
||
|
plot_width = dpg.get_item_rect_size(self.plot_tag)[0]
|
||
|
if plot_width <= 0 or plot_duration <= 0:
|
||
|
return
|
||
|
|
||
|
self._last_plot_duration = plot_duration
|
||
|
target_points_per_second = plot_width / plot_duration
|
||
|
work_items = []
|
||
|
for series_path, (time_array, value_array) in self._series_data.items():
|
||
|
if len(time_array) == 0:
|
||
|
continue
|
||
|
series_duration = time_array[-1] - time_array[0] if len(time_array) > 1 else 1
|
||
|
points_per_second = len(time_array) / series_duration
|
||
|
if points_per_second > target_points_per_second * 2:
|
||
|
target_points = max(int(target_points_per_second * series_duration), plot_width)
|
||
|
work_items.append((series_path, time_array, value_array, target_points))
|
||
|
elif dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
|
||
|
dpg.set_value(f"series_{self.panel_id}_{series_path}", [time_array, value_array])
|
||
|
|
||
|
if work_items:
|
||
|
self.worker_manager.submit_task(
|
||
|
TimeSeriesPanel._downsample_worker, work_items, callback=lambda results: self.results_deque.append(results), task_id=f"downsample_{self.panel_id}"
|
||
|
)
|
||
|
|
||
|
def add_series(self, series_path: str, update: bool = False):
|
||
|
with self._update_lock:
|
||
|
if update or series_path not in self._series_data:
|
||
|
self._series_data[series_path] = self.data_manager.get_timeseries(series_path)
|
||
|
|
||
|
time_array, value_array = self._series_data[series_path]
|
||
|
series_tag = f"series_{self.panel_id}_{series_path}"
|
||
|
if dpg.does_item_exist(series_tag):
|
||
|
dpg.set_value(series_tag, [time_array, value_array])
|
||
|
else:
|
||
|
line_series_tag = dpg.add_line_series(x=time_array, y=value_array, label=series_path, parent=self.y_axis_tag, tag=series_tag)
|
||
|
dpg.bind_item_theme(line_series_tag, "global_line_theme")
|
||
|
dpg.fit_axis_data(self.x_axis_tag)
|
||
|
dpg.fit_axis_data(self.y_axis_tag)
|
||
|
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
|
||
|
self._downsample_all_series(plot_duration)
|
||
|
|
||
|
def destroy_ui(self):
|
||
|
with self._update_lock:
|
||
|
self.data_manager.remove_observer(self.on_data_loaded)
|
||
|
if dpg.does_item_exist(self.plot_tag):
|
||
|
dpg.delete_item(self.plot_tag)
|
||
|
self._ui_created = False
|
||
|
|
||
|
def get_panel_type(self) -> str:
|
||
|
return "timeseries"
|
||
|
|
||
|
def clear(self):
|
||
|
with self._update_lock:
|
||
|
for series_path in list(self._series_data.keys()):
|
||
|
self.remove_series(series_path)
|
||
|
|
||
|
def remove_series(self, series_path: str):
|
||
|
with self._update_lock:
|
||
|
if series_path in self._series_data:
|
||
|
if dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
|
||
|
dpg.delete_item(f"series_{self.panel_id}_{series_path}")
|
||
|
del self._series_data[series_path]
|
||
|
|
||
|
def on_data_loaded(self, data: dict):
|
||
|
self._new_data = True
|
||
|
|
||
|
def _on_series_drop(self, sender, app_data, user_data):
|
||
|
self.add_series(app_data)
|
||
|
|
||
|
@staticmethod
|
||
|
def _downsample_worker(series_path, time_array, value_array, target_points):
|
||
|
if len(time_array) <= target_points:
|
||
|
return series_path, time_array, value_array
|
||
|
|
||
|
step = len(time_array) / target_points
|
||
|
indices = []
|
||
|
|
||
|
for i in range(target_points):
|
||
|
start_idx = int(i * step)
|
||
|
end_idx = int((i + 1) * step)
|
||
|
if start_idx == end_idx:
|
||
|
indices.append(start_idx)
|
||
|
else:
|
||
|
bucket_values = value_array[start_idx:end_idx]
|
||
|
min_idx = start_idx + np.argmin(bucket_values)
|
||
|
max_idx = start_idx + np.argmax(bucket_values)
|
||
|
if min_idx != max_idx:
|
||
|
indices.extend([min(min_idx, max_idx), max(min_idx, max_idx)])
|
||
|
else:
|
||
|
indices.append(min_idx)
|
||
|
indices = sorted(set(indices))
|
||
|
return series_path, time_array[indices], value_array[indices]
|