openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

155 lines
4.2 KiB

#!/usr/bin/env python3
import sys
import math
import numpy as np
import sympy as sp
from rednose import KalmanFilter
from rednose.helpers.ekf_sym import EKF_sym, gen_code
from selfdrive.locationd.models.constants import ObservationKind
i = 0
def _slice(n):
global i
s = slice(i, i + n)
i += n
return s
class States():
# Vehicle model params
STIFFNESS = _slice(1) # [-]
STEER_RATIO = _slice(1) # [-]
ANGLE_OFFSET = _slice(1) # [rad]
ANGLE_OFFSET_FAST = _slice(1) # [rad]
VELOCITY = _slice(2) # (x, y) [m/s]
YAW_RATE = _slice(1) # [rad/s]
STEER_ANGLE = _slice(1) # [rad]
class CarKalman(KalmanFilter):
name = 'car'
initial_x = np.array([
1.0,
15.0,
0.0,
0.0,
10.0, 0.0,
0.0,
0.0,
])
# process noise
Q = np.diag([
5 years ago
(.05/100)**2,
.01**2,
math.radians(0.002)**2,
5 years ago
math.radians(0.1)**2,
5 years ago
.1**2, .01**2,
math.radians(0.1)**2,
math.radians(0.1)**2,
])
5 years ago
P_initial = Q.copy()
obs_noise = {
5 years ago
ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.01)**2),
ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(5.0)**2),
5 years ago
ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2),
ObservationKind.STIFFNESS: np.atleast_2d(5.0**2),
ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2),
}
global_vars = [
sp.Symbol('mass'),
sp.Symbol('rotational_inertia'),
sp.Symbol('center_to_front'),
sp.Symbol('center_to_rear'),
sp.Symbol('stiffness_front'),
sp.Symbol('stiffness_rear'),
]
@staticmethod
def generate_code(generated_dir):
dim_state = CarKalman.initial_x.shape[0]
name = CarKalman.name
# globals
m, j, aF, aR, cF_orig, cR_orig = CarKalman.global_vars
# make functions and jacobians with sympy
# state variables
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
# Vehicle model constants
x = state[States.STIFFNESS, :][0, 0]
cF, cR = x * cF_orig, x * cR_orig
angle_offset = state[States.ANGLE_OFFSET, :][0, 0]
angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0]
sa = state[States.STEER_ANGLE, :][0, 0]
sR = state[States.STEER_RATIO, :][0, 0]
u, v = state[States.VELOCITY, :]
r = state[States.YAW_RATE, :][0, 0]
A = sp.Matrix(np.zeros((2, 2)))
A[0, 0] = -(cF + cR) / (m * u)
A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u
A[1, 0] = -(cF * aF - cR * aR) / (j * u)
A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u)
B = sp.Matrix(np.zeros((2, 1)))
B[0, 0] = cF / m / sR
B[1, 0] = (cF * aF) / j / sR
x = sp.Matrix([v, r]) # lateral velocity, yaw rate
x_dot = A * x + B * (sa - angle_offset - angle_offset_fast)
dt = sp.Symbol('dt')
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.VELOCITY.start + 1, 0] = x_dot[0]
state_dot[States.YAW_RATE.start, 0] = x_dot[1]
# Basic descretization, 1st order integrator
# Can be pretty bad if dt is big
f_sym = state + dt * state_dot
#
# Observation functions
#
obs_eqs = [
[sp.Matrix([r]), ObservationKind.ROAD_FRAME_YAW_RATE, None],
[sp.Matrix([u, v]), ObservationKind.ROAD_FRAME_XY_SPEED, None],
5 years ago
[sp.Matrix([u]), ObservationKind.ROAD_FRAME_X_SPEED, None],
[sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None],
[sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None],
[sp.Matrix([sR]), ObservationKind.STEER_RATIO, None],
[sp.Matrix([x]), ObservationKind.STIFFNESS, None],
]
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, global_vars=CarKalman.global_vars)
def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0):
dim_state = self.initial_x.shape[0]
dim_state_err = self.initial_P_diag.shape[0]
x_init = self.initial_x
x_init[States.STEER_RATIO] = steer_ratio
x_init[States.STIFFNESS] = stiffness_factor
x_init[States.ANGLE_OFFSET] = angle_offset
# init filter
self.filter = EKF_sym(generated_dir, self.name, self.Q, self.initial_x, self.P_initial, dim_state, dim_state_err, global_vars=self.global_vars)
if __name__ == "__main__":
generated_dir = sys.argv[2]
CarKalman.generate_code(generated_dir)