openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

158 lines
5.9 KiB

#!/usr/bin/env python3
import math
import json
import numpy as np
import cereal.messaging as messaging
from cereal import car
from common.params import Params, put_nonblocking
from selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
from selfdrive.locationd.models.constants import GENERATED_DIR
from selfdrive.swaglog import cloudlog
CARSTATE_DECIMATION = 5
class ParamsLearner:
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset):
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset)
self.kf.filter.set_mass(CP.mass) # pylint: disable=no-member
self.kf.filter.set_rotational_inertia(CP.rotationalInertia) # pylint: disable=no-member
self.kf.filter.set_center_to_front(CP.centerToFront) # pylint: disable=no-member
self.kf.filter.set_center_to_rear(CP.wheelbase - CP.centerToFront) # pylint: disable=no-member
self.kf.filter.set_stiffness_front(CP.tireStiffnessFront) # pylint: disable=no-member
self.kf.filter.set_stiffness_rear(CP.tireStiffnessRear) # pylint: disable=no-member
self.active = False
self.speed = 0
self.steering_pressed = False
self.steering_angle = 0
self.carstate_counter = 0
def handle_log(self, t, which, msg):
if which == 'liveLocationKalman':
yaw_rate = msg.angularVelocityCalibrated.value[2]
yaw_rate_std = msg.angularVelocityCalibrated.std[2]
5 years ago
if self.active:
self.kf.predict_and_observe(t,
ObservationKind.ROAD_FRAME_YAW_RATE,
np.array([[[-yaw_rate]]]),
np.array([np.atleast_2d(yaw_rate_std**2)]))
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[[0]]]))
# Clamp values
5 years ago
# x = self.kf.x
# if not (10 < x[States.STEER_RATIO] < 25):
# self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[[15.0]]]))
5 years ago
# if not (0.5 < x[States.STIFFNESS] < 3.0):
# self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[[1.0]]]))
elif which == 'carState':
self.carstate_counter += 1
if self.carstate_counter % CARSTATE_DECIMATION == 0:
self.steering_angle = msg.steeringAngle
self.steering_pressed = msg.steeringPressed
5 years ago
self.speed = msg.vEgo
in_linear_region = abs(self.steering_angle) < 45 or not self.steering_pressed
self.active = self.speed > 5 and in_linear_region
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[[math.radians(msg.steeringAngle)]]]))
5 years ago
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[[self.speed]]]))
if not self.active:
# Reset time when stopped so uncertainty doesn't grow
self.kf.filter.filter_time = t
self.kf.filter.reset_rewind()
def main(sm=None, pm=None):
if sm is None:
sm = messaging.SubMaster(['liveLocationKalman', 'carState'])
if pm is None:
pm = messaging.PubMaster(['liveParameters'])
params_reader = Params()
# wait for stats about the car to come in from controls
cloudlog.info("paramsd is waiting for CarParams")
CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
cloudlog.info("paramsd got CarParams")
params = params_reader.get("LiveParameters")
# Check if car model matches
if params is not None:
params = json.loads(params)
if params.get('carFingerprint', None) != CP.carFingerprint:
cloudlog.info("Parameter learner found parameters for wrong car.")
params = None
if params is None:
params = {
'carFingerprint': CP.carFingerprint,
'steerRatio': CP.steerRatio,
'stiffnessFactor': 1.0,
'angleOffsetAverage': 0.0,
}
cloudlog.info("Parameter learner resetting to default values")
learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverage']))
i = 0
while True:
sm.update()
for which, updated in sm.updated.items():
if not updated:
continue
t = sm.logMonoTime[which] * 1e-9
learner.handle_log(t, which, sm[which])
# TODO: set valid to false when locationd stops sending
# TODO: make sure controlsd knows when there is no gyro
if sm.updated['carState']:
msg = messaging.new_message('liveParameters')
msg.logMonoTime = sm.logMonoTime['carState']
msg.liveParameters.valid = True # TODO: Check if learned values are sane
msg.liveParameters.posenetValid = True
msg.liveParameters.sensorValid = True
x = learner.kf.x
msg.liveParameters.steerRatio = float(x[States.STEER_RATIO])
msg.liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
msg.liveParameters.angleOffsetAverage = math.degrees(x[States.ANGLE_OFFSET])
5 years ago
msg.liveParameters.angleOffset = msg.liveParameters.angleOffsetAverage + math.degrees(x[States.ANGLE_OFFSET_FAST])
i += 1
if i % 6000 == 0: # once a minute
params = {
'carFingerprint': CP.carFingerprint,
'steerRatio': msg.liveParameters.steerRatio,
'stiffnessFactor': msg.liveParameters.stiffnessFactor,
'angleOffsetAverage': msg.liveParameters.angleOffsetAverage,
}
put_nonblocking("LiveParameters", json.dumps(params))
# P = learner.kf.P
# print()
# print("sR", float(x[States.STEER_RATIO]), float(P[States.STEER_RATIO, States.STEER_RATIO])**0.5)
# print("x ", float(x[States.STIFFNESS]), float(P[States.STIFFNESS, States.STIFFNESS])**0.5)
# print("ao avg ", math.degrees(x[States.ANGLE_OFFSET]), math.degrees(P[States.ANGLE_OFFSET, States.ANGLE_OFFSET])**0.5)
# print("ao ", math.degrees(x[States.ANGLE_OFFSET_FAST]), math.degrees(P[States.ANGLE_OFFSET_FAST, States.ANGLE_OFFSET_FAST])**0.5)
pm.send('liveParameters', msg)
if __name__ == "__main__":
main()