openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

462 lines
18 KiB

# -*- coding: future_fstrings -*-
#
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
# cython: language_level=3
4 years ago
# cython: profile=False
# distutils: language=c
cimport cython
from libc cimport string
cimport acados_solver_common
cimport acados_solver
cimport numpy as cnp
import os
import numpy as np
cdef class AcadosOcpSolverFast:
"""
Class to interact with the acados ocp solver C object.
:param acados_ocp: type AcadosOcp - description of the OCP for acados
:param json_file: name for the json file used to render the templated code - default: acados_ocp_nlp.json
:param simulink_opts: Options to configure Simulink S-function blocks, mainly to activate possible Inputs and Outputs
"""
cdef acados_solver.nlp_solver_capsule *capsule
cdef void *nlp_opts
cdef acados_solver_common.ocp_nlp_dims *nlp_dims
cdef acados_solver_common.ocp_nlp_config *nlp_config
cdef acados_solver_common.ocp_nlp_out *nlp_out
cdef acados_solver_common.ocp_nlp_in *nlp_in
cdef acados_solver_common.ocp_nlp_solver *nlp_solver
cdef str model_name
cdef int N
cdef bint solver_created
def __cinit__(self, str model_name, int N, str code_export_dir):
self.model_name = model_name
self.N = N
self.solver_created = False
# create capsule
self.capsule = acados_solver.acados_create_capsule()
# create solver
assert acados_solver.acados_create(self.capsule) == 0
self.solver_created = True
# get pointers solver
self.nlp_opts = acados_solver.acados_get_nlp_opts(self.capsule)
self.nlp_dims = acados_solver.acados_get_nlp_dims(self.capsule)
self.nlp_config = acados_solver.acados_get_nlp_config(self.capsule)
self.nlp_out = acados_solver.acados_get_nlp_out(self.capsule)
self.nlp_in = acados_solver.acados_get_nlp_in(self.capsule)
self.nlp_solver = acados_solver.acados_get_nlp_solver(self.capsule)
def solve(self):
"""
Solve the ocp with current input.
"""
4 years ago
return acados_solver.acados_solve(self.capsule)
def set_new_time_steps(self, new_time_steps):
"""
Set new time steps before solving. Only reload library without code generation but with new time steps.
:param new_time_steps: vector of new time steps for the solver
.. note:: This allows for different use-cases: either set a new size of time-steps or a new distribution of
the shooting nodes without changing the number, e.g., to reach a different final time. Both cases
do not require a new code export and compilation.
"""
raise NotImplementedError()
def get(self, int stage, str field_):
"""
Get the last solution of the solver:
:param stage: integer corresponding to shooting node
:param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
.. note:: regarding lam, t: \n
the inequalities are internally organized in the following order: \n
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
.. note:: pi: multipliers for dynamics equality constraints \n
lam: multipliers for inequalities \n
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
sl: slack variables of soft lower inequality constraints \n
su: slack variables of soft upper inequality constraints \n
"""
out_fields = ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su']
field = field_.encode('utf-8')
if field_ not in out_fields:
raise Exception('AcadosOcpSolver.get(): {} is an invalid argument.\
\n Possible values are {}. Exiting.'.format(field_, out_fields))
if stage < 0 or stage > self.N:
raise Exception('AcadosOcpSolver.get(): stage index must be in [0, N], got: {}.'.format(self.N))
if stage == self.N and field_ == 'pi':
raise Exception('AcadosOcpSolver.get(): field {} does not exist at final stage {}.'\
.format(field_, stage))
cdef int dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
self.nlp_dims, self.nlp_out, stage, field)
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((dims,))
acados_solver_common.ocp_nlp_out_get(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, <void *> out.data)
return out
def print_statistics(self):
"""
prints statistics of previous solver run as a table:
- iter: iteration number
- res_stat: stationarity residual
- res_eq: residual wrt equality constraints (dynamics)
- res_ineq: residual wrt inequality constraints (constraints)
- res_comp: residual wrt complementarity conditions
- qp_stat: status of QP solver
- qp_iter: number of QP iterations
- qp_res_stat: stationarity residual of the last QP solution
- qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
- qp_res_ineq: residual wrt inequality constraints (constraints) of the last QP solution
- qp_res_comp: residual wrt complementarity conditions of the last QP solution
"""
raise NotImplementedError()
def store_iterate(self, filename='', overwrite=False):
"""
Stores the current iterate of the ocp solver in a json file.
:param filename: if not set, use model_name + timestamp + '.json'
:param overwrite: if false and filename exists add timestamp to filename
"""
raise NotImplementedError()
def load_iterate(self, filename):
"""
Loads the iterate stored in json file with filename into the ocp solver.
"""
raise NotImplementedError()
def get_stats(self, field_):
"""
Get the information of the last solver call.
:param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
"""
raise NotImplementedError()
def get_cost(self):
"""
Returns the cost value of the current solution.
"""
# compute cost internally
acados_solver_common.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
4 years ago
# create output
cdef double out
# call getter
4 years ago
acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, "cost_value", <void *> &out)
4 years ago
return out
def get_residuals(self):
"""
Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
"""
raise NotImplementedError()
# Note: this function should not be used anymore, better use cost_set, constraints_set
def set(self, int stage, str field_, value_):
"""
Set numerical data inside the solver.
:param stage: integer corresponding to shooting node
:param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
.. note:: regarding lam, t: \n
the inequalities are internally organized in the following order: \n
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
.. note:: pi: multipliers for dynamics equality constraints \n
lam: multipliers for inequalities \n
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
sl: slack variables of soft lower inequality constraints \n
su: slack variables of soft upper inequality constraints \n
"""
cost_fields = ['y_ref', 'yref']
constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
out_fields = ['x', 'u', 'pi', 'lam', 't', 'z', 'sl', 'su']
field = field_.encode('utf-8')
cdef double[::1] value
# treat parameters separately
if field_ == 'p':
value = np.ascontiguousarray(value_, dtype=np.double)
assert acados_solver.acados_update_params(self.capsule, stage, <double *> &value[0], value.shape[0]) == 0
else:
if field_ not in constraints_fields + cost_fields + out_fields:
raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\
\nPossible values are {}. Exiting.".format(field, \
constraints_fields + cost_fields + out_fields + ['p']))
dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
self.nlp_dims, self.nlp_out, stage, field)
if value_.shape[0] != dims:
msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_)
msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0])
raise Exception(msg)
value = np.ascontiguousarray(value_, dtype=np.double)
if field_ in constraints_fields:
acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config,
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0])
elif field_ in cost_fields:
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config,
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0])
elif field_ in out_fields:
acados_solver_common.ocp_nlp_out_set(self.nlp_config,
self.nlp_dims, self.nlp_out, stage, field, <void *> &value[0])
def cost_set_slice(self, int start_stage, int end_stage, bytes field, value_, bint const=False):
"""
"""
assert len(value_.shape) >= 2
cdef int i, idx
cdef int dims[2]
cdef double[:,:,:] value
value_shape = value_.shape
if len(value_shape) == 2:
value = value_[:,:,None]
value_shape = (value_shape[0], value_shape[1], 0)
else:
value = value_
assert value.strides[1] == 8 # list of column-major matrices; [:,::1,:]
for i in range(start_stage, end_stage):
idx = 0 if const else i
acados_solver_common.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, i, field, &dims[0])
if value_shape[1] != dims[0] or value_shape[2] != dims[1]:
raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension', \
' for field "{}" with dimension {} (you have {})'.format( \
field, tuple(dims), value_shape))
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, i, field, <void *> &value[idx][0][0])
def cost_set(self, int stage, bytes field, value_):
"""
Set numerical data in the cost module of the solver.
:param stage: integer corresponding to shooting node
:param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
:param value: of appropriate size
"""
cdef int dims[2]
acados_solver_common.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, &dims[0])
4 years ago
cdef double[::1,:] value
4 years ago
value_shape = value_.shape
if len(value_shape) == 1:
value_shape = (value_shape[0], 0)
4 years ago
value = np.asfortranarray(value_[None,:])
elif len(value_shape) == 2:
4 years ago
# Get elements in column major order
4 years ago
value = np.asfortranarray(value_)
if value_shape[0] != dims[0] or value_shape[1] != dims[1]:
raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension', \
' for field "{}" with dimension {} (you have {})'.format( \
field, tuple(dims), value_shape))
acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config, \
4 years ago
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
4 years ago
def constraints_set(self, int stage, str field_, value_):
"""
Set numerical data in the constraint module of the solver.
:param stage: integer corresponding to shooting node
:param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi', 'C', 'D']
:param value: of appropriate size
"""
field = field_.encode('utf-8')
cdef int dims[2]
acados_solver_common.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, &dims[0])
4 years ago
cdef double[::1,:] value
4 years ago
value_shape = value_.shape
if len(value_shape) == 1:
value_shape = (value_shape[0], 0)
4 years ago
value = np.asfortranarray(value_[None,:])
elif len(value_shape) == 2:
4 years ago
# Get elements in column major order
4 years ago
value = np.asfortranarray(value_)
if value_shape[0] != dims[0] or value_shape[1] != dims[1]:
raise Exception('AcadosOcpSolver.constraints_set(): mismatching dimension' \
' for field "{}" with dimension {} (you have {})'.format(field_, tuple(dims), value_shape))
acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config, \
4 years ago
self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
return
def dynamics_get(self, int stage, field_):
"""
Get numerical data from the dynamics module of the solver:
:param stage: integer corresponding to shooting node
:param field: string, e.g. 'A'
"""
field = field_
field = field.encode('utf-8')
# get dims
cdef int[2] dims
acados_solver_common.ocp_nlp_dynamics_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field, &dims[0])
# create output data
4 years ago
out = np.zeros((dims[0], dims[1]), order='F', dtype=np.float64)
# call getter
acados_solver_common.ocp_nlp_get_at_stage(self.nlp_config, self.nlp_dims, self.nlp_solver, stage, field, <void *> out.data)
return out
def options_set(self, bytes field_, value_):
"""
Set options of the solver.
:param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction'
:param value: of type int, float
"""
int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks']
double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction']
string_fields = ['globalization']
# encode
field = field_
field = field.encode('utf-8')
cdef int int_value
cdef double double_value
4 years ago
cdef unsigned char[::1] string_value
# check field availability and type
if field_ in int_fields:
if not isinstance(value_, int):
raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
if field_ == 'rti_phase':
if value_ < 0 or value_ > 2:
raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can '
'take only values 0, 1, 2 for SQP-RTI-type solvers')
if self.acados_ocp.solver_options.nlp_solver_type != 'SQP_RTI' and value_ > 0:
raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can '
'take only value 0 for SQP-type solvers')
int_value = value_
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &int_value)
elif field_ in double_fields:
if not isinstance(value_, float):
raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
double_value = value_
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &double_value)
elif field_ in string_fields:
if not isinstance(value_, bytes):
raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
string_value = value_.encode('utf-8')
acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &string_value[0])
raise Exception('AcadosOcpSolver.options_set() does not support field {}.'\
'\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
def __del__(self):
if self.solver_created:
acados_solver.acados_free(self.capsule)
acados_solver.acados_free_capsule(self.capsule)