openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

87 lines
2.3 KiB

import os
import numpy as np
import unittest
from kinematic_kf import KinematicKalman, ObservationKind, States # pylint: disable=import-error
GENERATED_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'generated'))
class TestKinematic(unittest.TestCase):
def test_kinematic_kf(self):
np.random.seed(0)
kf = KinematicKalman(GENERATED_DIR)
# Simple simulation
dt = 0.01
ts = np.arange(0, 5, step=dt)
vs = np.sin(ts * 5)
x = 0.0
xs = []
xs_meas = []
xs_kf = []
vs_kf = []
xs_kf_std = []
vs_kf_std = []
for t, v in zip(ts, vs):
xs.append(x)
# Update kf
meas = np.random.normal(x, 0.1)
xs_meas.append(meas)
kf.predict_and_observe(t, ObservationKind.POSITION, [meas])
# Retrieve kf values
state = kf.x
xs_kf.append(float(state[States.POSITION].item()))
vs_kf.append(float(state[States.VELOCITY].item()))
std = np.sqrt(kf.P)
xs_kf_std.append(float(std[States.POSITION, States.POSITION].item()))
vs_kf_std.append(float(std[States.VELOCITY, States.VELOCITY].item()))
# Update simulation
x += v * dt
xs, xs_meas, xs_kf, vs_kf, xs_kf_std, vs_kf_std = (np.asarray(a) for a in (xs, xs_meas, xs_kf, vs_kf, xs_kf_std, vs_kf_std))
self.assertAlmostEqual(xs_kf[-1], -0.010866289677966417)
self.assertAlmostEqual(xs_kf_std[-1], 0.04477103863330089)
self.assertAlmostEqual(vs_kf[-1], -0.8553720537261753)
self.assertAlmostEqual(vs_kf_std[-1], 0.6695762270974388)
if "PLOT" in os.environ:
import matplotlib.pyplot as plt # pylint: disable=import-error
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(ts, xs, 'k', label='Simulation')
plt.plot(ts, xs_meas, 'k.', label='Measurements')
plt.plot(ts, xs_kf, label='KF')
ax = plt.gca()
ax.fill_between(ts, xs_kf - xs_kf_std, xs_kf + xs_kf_std, alpha=.2, color='C0')
plt.xlabel("Time [s]")
plt.ylabel("Position [m]")
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(ts, vs, 'k', label='Simulation')
plt.plot(ts, vs_kf, label='KF')
ax = plt.gca()
ax.fill_between(ts, vs_kf - vs_kf_std, vs_kf + vs_kf_std, alpha=.2, color='C0')
plt.xlabel("Time [s]")
plt.ylabel("Velocity [m/s]")
plt.legend()
plt.show()
if __name__ == "__main__":
unittest.main()