You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
9.7 KiB
205 lines
9.7 KiB
1 year ago
|
from typing import List, Tuple, Dict, Any
|
||
|
from tinygrad.helpers import ImageDType, prod, IMAGE, getenv, dtypes, DEBUG, flatten
|
||
|
|
||
|
# *** image Tensor function replacements ***
|
||
|
|
||
|
from tinygrad.lazy import get_single_root
|
||
|
|
||
|
def image_dot(self, w):
|
||
|
# NOTE: we use a 1x1 conv2d to do the matmul. mxk @ kxn = (1,k,m,1).conv2d(n,k,1,1)
|
||
|
n1, n2 = len(self.shape), len(w.shape)
|
||
|
assert n1 != 0 and n2 != 0, f"both arguments to matmul need to be at least 1D, but they are {n1}D and {n2}D"
|
||
|
assert self.shape[-1] == w.shape[-min(n2, 2)], f"Input Tensor shapes {self.shape} and {w.shape} cannot be multiplied ({self.shape[-1]} != {w.shape[-min(n2, 2)]})"
|
||
|
bs, groups = prod(self.shape[0:-2]), prod(w.shape[0:-2])
|
||
|
cin, cout = w.shape[-2], w.shape[-1]
|
||
|
out_shape_t = self.shape[0:-2] + (cout,-1)
|
||
|
if len(self.shape) > 1:
|
||
|
order = tuple(range(len(self.shape)-2)) + (len(self.shape)-1, len(self.shape)-2)
|
||
|
else:
|
||
|
order, out_shape_t = (0,), (cout, )
|
||
|
worder = tuple(range(len(w.shape)-2)) + (len(w.shape)-1, len(w.shape)-2)
|
||
|
|
||
|
# NOTE: with NHWC we can remove the transposes
|
||
|
# bs x groups*cin x H x W
|
||
|
cx = self.permute(order=order).reshape(shape=(bs//groups, groups*cin, -1, 1))
|
||
|
# groups*cout x cin x H, W
|
||
|
cw = w.permute(order=worder).reshape(shape=(groups*cout, cin, 1, 1))
|
||
|
return image_conv2d(cx, cw, groups=groups).reshape(shape=out_shape_t).permute(order=order)
|
||
|
|
||
|
def image_conv2d(self, weight, bias=None, groups=1, stride=1, dilation=1, padding=0):
|
||
|
base_image_type = dtypes.imageh if getenv("FLOAT16", 0) else dtypes.imagef
|
||
|
|
||
|
(bs,_,iy,ix), (cout,cin,H,W) = self.shape, weight.shape
|
||
|
rcout = cout//groups
|
||
|
x, w = self, weight.reshape(groups, rcout, cin, H, W)
|
||
|
|
||
|
# hack for non multiples of 4 on cin
|
||
|
if cin % 4 != 0 and not (cin == 1 and groups%4 == 0):
|
||
|
x = x.reshape(bs, groups, cin, iy, ix) # do this always?
|
||
|
added_input_channels = 4 - (cin % 4)
|
||
|
w = w.pad(tuple((0, added_input_channels) if i == 2 else (0, 0) for i in range(len(w.shape))))
|
||
|
x = x.pad(tuple((0, added_input_channels) if i == 2 else (0, 0) for i in range(len(x.shape))))
|
||
|
cin = cin + added_input_channels
|
||
|
x = x.reshape(bs, groups*cin, iy, ix)
|
||
|
|
||
|
# hack for non multiples of 4 on rcout
|
||
|
added_output_channels = 0
|
||
|
if rcout % 4 != 0 and not (rcout == 1 and groups%4 == 0):
|
||
|
added_output_channels = 4 - (rcout % 4)
|
||
|
rcout += added_output_channels
|
||
|
cout = groups * rcout
|
||
|
w = w.slice(tuple((0, rcout) if i == 1 else (0, s) for i,s in enumerate(w.shape)))
|
||
|
|
||
|
# packed (note: flipping bs and iy would make the auto-padding work)
|
||
|
x = x.permute(0,2,3,1)
|
||
|
cin_last = iy == 1 and ix == 1
|
||
|
if cin == 1: w = w.reshape(cout//4,4,H,W).permute(0,2,3,1)
|
||
|
elif cin_last: w = w.reshape(cout//4,4,cin//4,4,H,W).permute(0,4,2,5,1,3)
|
||
|
else: w = w.reshape(cout//4,4,cin//4,4,H,W).permute(0,4,2,5,3,1)
|
||
|
|
||
|
# contiguous creates the image, and early realize static weights (TODO: test for the static weight)
|
||
|
if IMAGE >= 2: x,w = x.cast(base_image_type((bs*iy, ix*groups*cin//4, 4))), w.cast(base_image_type((cout//4, H*W*cin, 4)))
|
||
|
x, w = x.contiguous(), w.contiguous()
|
||
|
if getenv("PREREALIZE", 1) and get_single_root(w.lazydata).realized: w.realize()
|
||
|
|
||
|
# expand out
|
||
|
rcin_hi, rcin_lo = cin//4 if cin >= 4 else 1, 4 if cin >= 4 else 1
|
||
|
cout_expand = [groups//4 if cin == 1 else groups, 4 if cin == 1 else 1, rcout//4 if rcout >= 4 else 1, 4 if rcout >= 4 else 1]
|
||
|
x = x.reshape(bs, iy, ix, groups, rcin_hi, rcin_lo)
|
||
|
if cin_last: w = w.reshape(cout//4, H, rcin_hi, W, 4, rcin_lo)
|
||
|
else: w = w.reshape(cout//4, H, rcin_hi, W, rcin_lo, 4).permute(0,1,2,3,5,4)
|
||
|
|
||
|
# padding
|
||
|
padding_ = [padding]*4 if isinstance(padding, int) else (padding if len(padding) == 4 else [padding[1], padding[1], padding[0], padding[0]])
|
||
|
x = x.slice((None, (-padding_[2], x.shape[1]+padding_[3]), (-padding_[0], x.shape[2]+padding_[1]), None, None, None))
|
||
|
|
||
|
# prepare input
|
||
|
x = x.permute(0,3,4,5,1,2)._pool((H, W), stride, dilation) # -> (bs, groups, rcin_hi, rcin_lo, oy, ox, H, W)
|
||
|
oy, ox = x.shape[4:6]
|
||
|
x = x.permute(0,4,5,1,2,3,6,7).reshape(bs, oy, ox, *cout_expand[0:2], 1, 1, rcin_hi, rcin_lo, H, W)
|
||
|
x = x.expand(bs, oy, ox, *cout_expand, rcin_hi, rcin_lo, H, W)
|
||
|
|
||
|
# prepare weights
|
||
|
w = w.permute(0,4,2,5,1,3)
|
||
|
w = w.reshape((1, 1, 1, *cout_expand, rcin_hi, rcin_lo, H, W)).expand(x.shape)
|
||
|
|
||
|
# the conv! (+ the bias)
|
||
|
ret = x*w
|
||
|
if IMAGE >= 2: ret = ret.cast(base_image_type((bs*oy, ox*cout//4, 4)))
|
||
|
ret = ret.sum((-4, -3, -2, -1))
|
||
|
|
||
|
# undo hack for non multiples of 4 on C.rcout
|
||
|
if added_output_channels != 0:
|
||
|
ret = ret.reshape(bs, oy, ox, groups, rcout)[:, :, :, :, :-added_output_channels]
|
||
|
rcout -= added_output_channels
|
||
|
cout = groups * rcout
|
||
|
|
||
|
# NCHW output
|
||
|
ret = ret.reshape(bs, oy, ox, cout).permute(0,3,1,2)
|
||
|
return ret if bias is None else ret.add(bias.reshape(1, -1, 1, 1))
|
||
|
|
||
|
# *** schedules with images need to be fixed to be valid ***
|
||
|
|
||
|
import dataclasses
|
||
|
from tinygrad.ops import ScheduleItem, BufferOps, LazyOp, UnaryOps, LoadOps, MemBuffer, get_lazyop_info
|
||
|
|
||
|
def fix_schedule_for_images(schedule:List[ScheduleItem]):
|
||
|
# this is the fundamental fix, find unwritable or unreadable images and convert them to normal float32 (TODO: should it be float16?)
|
||
|
replace_inputs = {}
|
||
|
for i, si in enumerate(schedule):
|
||
|
if isinstance(si.out.dtype, ImageDType) and (prod(si.out.shape) != prod(si.out.dtype.shape) or not any(si.out.shape[x]%4 == 0 for x in si.out.st.unit_stride_axes())):
|
||
|
if DEBUG >= 1: print(f"{i:3d}: rewrite output, output shape {prod(si.out.shape)}, image dtype {si.out.dtype} prod {prod(si.out.dtype.shape)}")
|
||
|
si.out.dtype = dtypes.float32
|
||
|
for b in si.ast.get_lazyops():
|
||
|
if b.op != BufferOps.MEM: continue
|
||
|
# TODO: unit_stride axes will fail if there's a mask, even if the mask is divisble by four. this is too aggressive
|
||
|
if isinstance(si.inputs[b.arg.idx-1].dtype, ImageDType) and (b.arg.st.real_offset() % 4 != 0 or not any(b.arg.st.shape[x]%4 == 0 for x in b.arg.st.unit_stride_axes())):
|
||
|
if DEBUG >= 1: print(f"{i:3d}: rewrite input, image dtype {si.inputs[b.arg.idx-1].dtype}, {b.arg.st.views}")
|
||
|
if si.inputs[b.arg.idx-1].realized:
|
||
|
# have to copy it
|
||
|
replace_inputs[si.inputs[b.arg.idx-1]] = si.inputs[b.arg.idx-1].cast(dtypes.float32)
|
||
|
else:
|
||
|
# change it before it's created
|
||
|
si.inputs[b.arg.idx-1].dtype = dtypes.float32
|
||
|
|
||
|
# now fix up the schedule to reflect the new dtypes
|
||
|
fixed_schedule:List[ScheduleItem] = []
|
||
|
for i,si in enumerate(schedule):
|
||
|
ast = si.ast
|
||
|
inputs = si.inputs
|
||
|
|
||
|
# replace inputs with casted versions
|
||
|
if any(x in replace_inputs for x in inputs):
|
||
|
fixed_schedule += flatten([replace_inputs[x].schedule() for x in inputs if x in replace_inputs])
|
||
|
inputs = tuple(replace_inputs.get(x, x) for x in inputs)
|
||
|
|
||
|
# fix input dtypes to match what they actually are
|
||
|
replacements = {}
|
||
|
for b in si.ast.get_lazyops():
|
||
|
if b.op != BufferOps.MEM: continue
|
||
|
if b.arg.dtype != inputs[b.arg.idx-1].dtype:
|
||
|
replacements[b] = LazyOp(BufferOps.MEM, (), MemBuffer(b.arg.idx, inputs[b.arg.idx-1].dtype, b.arg.st))
|
||
|
if replacements: ast = ast.map_buffers(replacements)
|
||
|
|
||
|
# fix the ops to create the output dtype
|
||
|
if ast.op not in LoadOps:
|
||
|
info = get_lazyop_info(ast)
|
||
|
if info.dtype != si.out.dtype:
|
||
|
if DEBUG >= 3: print(f"{i:3d}: info.dtype {info.dtype} != {si.out.dtype} -> {si.out.dtype}")
|
||
|
ast = LazyOp(UnaryOps.CAST, (ast,), (si.out.dtype, False))
|
||
|
|
||
|
# put this in the fixed schedule
|
||
|
fixed_schedule.append(dataclasses.replace(si, ast=ast, inputs=inputs))
|
||
|
return fixed_schedule
|
||
|
|
||
|
# *** images have weird indexing requirements ***
|
||
|
|
||
|
from tinygrad.shape.symbolic import Node, AndNode, Variable, NumNode, SumNode, LtNode
|
||
|
|
||
|
def to_image_idx(base_shape:Tuple[int, ...], idxy:Node, valid:Node) -> Tuple[Tuple[Node, Node], Node]:
|
||
|
idx = (idxy // 4) % base_shape[1]
|
||
|
idy = (idxy // (4 * base_shape[1]))
|
||
|
|
||
|
if valid.min == 0 and isinstance(idxy, SumNode):
|
||
|
nodes = valid.nodes if isinstance(valid, AndNode) else [valid]
|
||
|
val_dict: Dict[Node, Any] = {}
|
||
|
idxy_flat_var = [(i, i.vars()[0]) for i in idxy.flat_components if not isinstance(i, NumNode)]
|
||
|
|
||
|
for node in nodes:
|
||
|
assert isinstance(node, LtNode)
|
||
|
node_flat, node_vars = node.a.flat_components if isinstance(node.a, SumNode) else [node.a], node.vars()
|
||
|
same_sym = [i for (i, var) in idxy_flat_var if var in node_vars]
|
||
|
if len(same_sym) == 0: continue
|
||
|
first, second = sorted(same_sym)[0], sorted(node_flat)[0]
|
||
|
f_b = 1 if isinstance(first, Variable) else first.b
|
||
|
s_b = 1 if isinstance(second, Variable) else second.b
|
||
|
sig = -1 if s_b < 0 else 1
|
||
|
key_node = sig*node.a
|
||
|
if key_node not in val_dict: val_dict[key_node] = [key_node.min, key_node.max, abs(f_b//s_b)]
|
||
|
val_dict[key_node][(sig + 1)//2] = sig*(node.b - 1)
|
||
|
|
||
|
fakes = {}
|
||
|
for cnt, (key_node, (mnn, mxn, multip)) in enumerate(val_dict.items()):
|
||
|
fake_var = Variable("fake_" + str(cnt), mnn, mxn)
|
||
|
fakes[fake_var] = key_node
|
||
|
idxy += multip*(fake_var - key_node)
|
||
|
|
||
|
idx = (idxy // 4) % base_shape[1]
|
||
|
idy = (idxy // (4 * base_shape[1]))
|
||
|
|
||
|
fake_rep = {fake: node for fake, node in fakes.items()}
|
||
|
|
||
|
idx = idx.substitute(fake_rep)
|
||
|
idy = idy.substitute(fake_rep)
|
||
|
|
||
|
idy_vars, idx_vars, ones = set(idy.vars()), set(idx.vars()), []
|
||
|
for node in nodes:
|
||
|
node_vars = set(node.vars())
|
||
|
if not node_vars & (idx_vars | idy_vars): continue #There is simplified NumNode which can not go outside the bounds
|
||
|
# NOTE: Why does only idy is problematic? and not the idx
|
||
|
if idy_vars == node_vars or idy_vars & node_vars == set(): ones.append(node)
|
||
|
valid = Variable.ands([i for i in nodes if i not in ones])
|
||
|
|
||
|
if DEBUG>=5: print("to_image_idx", base_shape, idx.min, idx.max, idy.min, idy.max, idx, idy, valid)
|
||
|
return (idx, idy), valid
|