openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

69 lines
3.4 KiB

# sorted in order of increasing complexity
from typing import List
from tinygrad.helpers import dedup
from tinygrad.tensor import Tensor
class Optimizer:
def __init__(self, params: List[Tensor], lr: float):
# if it's None, but being put into an optimizer, set it to True
for x in params:
if x.requires_grad is None: x.requires_grad = True
self.params: List[Tensor] = dedup([x for x in params if x.requires_grad])
self.buffers: List[Tensor] = dedup([x for x in params if not x.requires_grad]) # buffers are still realized
self.lr = Tensor([lr], requires_grad=False).contiguous()
def zero_grad(self):
for param in self.params: param.grad = None
def realize(self, extra=None):
# NOTE: in extra is too late for most of the params due to issues with assign
Tensor.corealize(extra + self.params + self.buffers if extra is not None else self.params + self.buffers)
class SGD(Optimizer):
def __init__(self, params: List[Tensor], lr=0.001, momentum=0, weight_decay=0.0, nesterov=False):
super().__init__(params, lr)
self.momentum, self.wd, self.nesterov = momentum, weight_decay, nesterov
self.b = [Tensor.zeros(*t.shape, device=t.device, requires_grad=False) for t in self.params] if self.momentum else []
# https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
def step(self) -> None:
for i, t in enumerate(self.params):
assert t.grad is not None
g = t.grad.realize() + self.wd * t.detach()
if self.momentum:
self.b[i].assign(self.momentum * self.b[i] + g).realize() # NOTE: self.b[i] is zero on the first run, no if required
g = (g + self.momentum * self.b[i]) if self.nesterov else self.b[i]
t.assign(t.detach() - g * self.lr)
self.realize(self.b)
# LAMB is essentially just the trust ratio part of LARS applied to Adam/W so if we just set the trust ratio to 1.0 its just Adam/W.
def AdamW(params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8, wd=0.01): return LAMB(params, lr, b1, b2, eps, wd, adam=True)
def Adam(params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8): return LAMB(params, lr, b1, b2, eps, 0.0, adam=True)
class LAMB(Optimizer):
def __init__(self, params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-6, wd=0.0, adam=False):
super().__init__(params, lr)
self.b1, self.b2, self.eps, self.wd, self.adam, self.t = b1, b2, eps, wd, adam, Tensor([0], requires_grad=False).realize()
self.m = [Tensor.zeros(*t.shape, device=t.device, requires_grad=False) for t in self.params]
self.v = [Tensor.zeros(*t.shape, device=t.device, requires_grad=False) for t in self.params]
def step(self) -> None:
self.t.assign(self.t + 1).realize()
for i, t in enumerate(self.params):
assert t.grad is not None
g = t.grad.realize()
self.m[i].assign(self.b1 * self.m[i] + (1.0 - self.b1) * g).realize()
self.v[i].assign(self.b2 * self.v[i] + (1.0 - self.b2) * (g * g)).realize()
m_hat = self.m[i] / (1.0 - self.b1**self.t)
v_hat = self.v[i] / (1.0 - self.b2**self.t)
up = (m_hat / (v_hat.sqrt() + self.eps)) + self.wd * t.detach()
if not self.adam:
r1 = t.detach().square().sum().sqrt()
r2 = up.square().sum().sqrt()
r = Tensor.where(r1 > 0, Tensor.where(r2 > 0, r1 / r2, 1.0), 1.0)
else:
r = 1.0
t.assign(t.detach() - self.lr * r * up)
self.realize([self.t] + self.m + self.v)