openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

248 lines
6.5 KiB

#include <cstdio>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <string>
#include <algorithm>
#include <capnp/serialize.h>
#include "cereal/gen/cpp/log.capnp.h"
#include "common.h"
#define DEBUG(...)
// #define DEBUG printf
#define INFO printf
bool MessageState::parse(uint64_t sec, uint16_t ts_, uint8_t * dat) {
uint64_t dat_le = read_u64_le(dat);
uint64_t dat_be = read_u64_be(dat);
for (int i=0; i < parse_sigs.size(); i++) {
auto& sig = parse_sigs[i];
int64_t tmp;
if (sig.is_little_endian){
tmp = (dat_le >> sig.b1) & ((1ULL << sig.b2)-1);
} else {
tmp = (dat_be >> sig.bo) & ((1ULL << sig.b2)-1);
}
if (sig.is_signed) {
tmp -= (tmp >> (sig.b2-1)) ? (1ULL << sig.b2) : 0; //signed
}
DEBUG("parse 0x%X %s -> %lld\n", address, sig.name, tmp);
if (sig.type == SignalType::HONDA_CHECKSUM) {
if (honda_checksum(address, dat_be, size) != tmp) {
INFO("0x%X CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::HONDA_COUNTER) {
if (!update_counter_generic(tmp, sig.b2)) {
return false;
}
} else if (sig.type == SignalType::TOYOTA_CHECKSUM) {
if (toyota_checksum(address, dat_be, size) != tmp) {
INFO("0x%X CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::VOLKSWAGEN_CHECKSUM) {
if (volkswagen_crc(address, dat_le, size) != tmp) {
INFO("0x%X CRC FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::VOLKSWAGEN_COUNTER) {
if (!update_counter_generic(tmp, sig.b2)) {
INFO("0x%X CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::PEDAL_CHECKSUM) {
if (pedal_checksum(dat_be, size) != tmp) {
INFO("0x%X PEDAL CHECKSUM FAIL\n", address);
return false;
}
} else if (sig.type == SignalType::PEDAL_COUNTER) {
if (!update_counter_generic(tmp, sig.b2)) {
return false;
}
}
vals[i] = tmp * sig.factor + sig.offset;
}
ts = ts_;
seen = sec;
return true;
}
bool MessageState::update_counter_generic(int64_t v, int cnt_size) {
uint8_t old_counter = counter;
counter = v;
if (((old_counter+1) & ((1 << cnt_size) -1)) != v) {
counter_fail += 1;
if (counter_fail > 1) {
INFO("%X COUNTER FAIL %d -- %d vs %d\n", address, counter_fail, old_counter, (int)v);
}
if (counter_fail >= MAX_BAD_COUNTER) {
return false;
}
} else if (counter_fail > 0) {
counter_fail--;
}
return true;
}
CANParser::CANParser(int abus, const std::string& dbc_name,
const std::vector<MessageParseOptions> &options,
const std::vector<SignalParseOptions> &sigoptions)
: bus(abus) {
dbc = dbc_lookup(dbc_name);
assert(dbc);
init_crc_lookup_tables();
for (const auto& op : options) {
MessageState state = {
.address = op.address,
// .check_frequency = op.check_frequency,
};
// msg is not valid if a message isn't received for 10 consecutive steps
if (op.check_frequency > 0) {
state.check_threshold = (1000000000ULL / op.check_frequency) * 10;
}
const Msg* msg = NULL;
for (int i=0; i<dbc->num_msgs; i++) {
if (dbc->msgs[i].address == op.address) {
msg = &dbc->msgs[i];
break;
}
}
if (!msg) {
fprintf(stderr, "CANParser: could not find message 0x%X in dnc %s\n", op.address, dbc_name.c_str());
assert(false);
}
state.size = msg->size;
// track checksums and counters for this message
for (int i=0; i<msg->num_sigs; i++) {
const Signal *sig = &msg->sigs[i];
if (sig->type != SignalType::DEFAULT) {
state.parse_sigs.push_back(*sig);
state.vals.push_back(0);
}
}
// track requested signals for this message
for (const auto& sigop : sigoptions) {
if (sigop.address != op.address) continue;
for (int i=0; i<msg->num_sigs; i++) {
const Signal *sig = &msg->sigs[i];
if (strcmp(sig->name, sigop.name) == 0
&& sig->type == SignalType::DEFAULT) {
state.parse_sigs.push_back(*sig);
state.vals.push_back(sigop.default_value);
break;
}
}
}
message_states[state.address] = state;
}
}
void CANParser::UpdateCans(uint64_t sec, const capnp::List<cereal::CanData>::Reader& cans) {
int msg_count = cans.size();
uint64_t p;
DEBUG("got %d messages\n", msg_count);
// parse the messages
for (int i = 0; i < msg_count; i++) {
auto cmsg = cans[i];
if (cmsg.getSrc() != bus) {
// DEBUG("skip %d: wrong bus\n", cmsg.getAddress());
continue;
}
auto state_it = message_states.find(cmsg.getAddress());
if (state_it == message_states.end()) {
// DEBUG("skip %d: not specified\n", cmsg.getAddress());
continue;
}
if (cmsg.getDat().size() > 8) continue; //shouldnt ever happen
uint8_t dat[8] = {0};
memcpy(dat, cmsg.getDat().begin(), cmsg.getDat().size());
state_it->second.parse(sec, cmsg.getBusTime(), dat);
}
}
void CANParser::UpdateValid(uint64_t sec) {
can_valid = true;
for (const auto& kv : message_states) {
const auto& state = kv.second;
if (state.check_threshold > 0 && (sec - state.seen) > state.check_threshold) {
if (state.seen > 0) {
DEBUG("%X TIMEOUT\n", state.address);
}
can_valid = false;
}
}
}
void CANParser::update_string(std::string data) {
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((data.length() / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), data.data(), data.length());
// extract the messages
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
last_sec = event.getLogMonoTime();
auto cans = event.getCan();
UpdateCans(last_sec, cans);
UpdateValid(last_sec);
}
std::vector<SignalValue> CANParser::query_latest() {
std::vector<SignalValue> ret;
for (const auto& kv : message_states) {
const auto& state = kv.second;
if (last_sec != 0 && state.seen != last_sec) continue;
for (int i=0; i<state.parse_sigs.size(); i++) {
const Signal &sig = state.parse_sigs[i];
ret.push_back((SignalValue){
.address = state.address,
.ts = state.ts,
.name = sig.name,
.value = state.vals[i],
});
}
}
return ret;
}