You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					108 lines
				
				4.1 KiB
			
		
		
			
		
	
	
					108 lines
				
				4.1 KiB
			| 
								 
											2 weeks ago
										 
									 | 
							
								import time
							 | 
						||
| 
								 | 
							
								import triton
							 | 
						||
| 
								 | 
							
								import triton.language as tl
							 | 
						||
| 
								 | 
							
								from triton.compiler import AttrsDescriptor, ASTSource, compile as triton_compile
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								from tinygrad import Tensor, dtypes, Device
							 | 
						||
| 
								 | 
							
								from tinygrad.engine.realize import CompiledRunner, ExecItem, ProgramSpec
							 | 
						||
| 
								 | 
							
								from tinygrad.helpers import getenv
							 | 
						||
| 
								 | 
							
								np.set_printoptions(suppress=True)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@triton.jit
							 | 
						||
| 
								 | 
							
								def matmul_kernel(c_ptr, a_ptr, b_ptr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr):
							 | 
						||
| 
								 | 
							
								  pid_m = tl.program_id(axis=0)
							 | 
						||
| 
								 | 
							
								  pid_n = tl.program_id(axis=1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  M, N, K = 4096, 4096, 4096
							 | 
						||
| 
								 | 
							
								  stride_am = 4096
							 | 
						||
| 
								 | 
							
								  stride_ak = 1
							 | 
						||
| 
								 | 
							
								  stride_bk = 4096
							 | 
						||
| 
								 | 
							
								  stride_bn = 1
							 | 
						||
| 
								 | 
							
								  stride_cm = 4096
							 | 
						||
| 
								 | 
							
								  stride_cn = 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
							 | 
						||
| 
								 | 
							
								  offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
							 | 
						||
| 
								 | 
							
								  offs_k = tl.arange(0, BLOCK_SIZE_K)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
							 | 
						||
| 
								 | 
							
								  b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
							 | 
						||
| 
								 | 
							
								  for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
							 | 
						||
| 
								 | 
							
								    a = tl.load(a_ptrs)
							 | 
						||
| 
								 | 
							
								    b = tl.load(b_ptrs)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    accumulator = tl.dot(a, b, accumulator)
							 | 
						||
| 
								 | 
							
								    a_ptrs += BLOCK_SIZE_K * stride_ak
							 | 
						||
| 
								 | 
							
								    b_ptrs += BLOCK_SIZE_K * stride_bk
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  c = tl.cast(accumulator, tl.float16)
							 | 
						||
| 
								 | 
							
								  offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
							 | 
						||
| 
								 | 
							
								  offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
							 | 
						||
| 
								 | 
							
								  c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
							 | 
						||
| 
								 | 
							
								  tl.store(c_ptrs, c)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# CUDA=1 CUDA_PTX=1 python3 extra/gemm/triton_nv_matmul.py
							 | 
						||
| 
								 | 
							
								if __name__ == "__main__":
							 | 
						||
| 
								 | 
							
								  BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K = 64, 128, 64
							 | 
						||
| 
								 | 
							
								  M, N, K = 4096, 4096, 4096
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  # **** torch test ****
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if getenv("TORCH"):
							 | 
						||
| 
								 | 
							
								    import torch
							 | 
						||
| 
								 | 
							
								    c = torch.empty((M, N), device='cuda:0', dtype=torch.float16)
							 | 
						||
| 
								 | 
							
								    a = torch.empty((M, K), device='cuda:0', dtype=torch.float16)
							 | 
						||
| 
								 | 
							
								    b = torch.empty((K, N), device='cuda:0', dtype=torch.float16)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for i in range(5):
							 | 
						||
| 
								 | 
							
								      st = time.perf_counter()
							 | 
						||
| 
								 | 
							
								      matmul_kernel[triton.cdiv(M, BLOCK_SIZE_M), triton.cdiv(N, BLOCK_SIZE_N)](
							 | 
						||
| 
								 | 
							
								        c, a, b, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K)
							 | 
						||
| 
								 | 
							
								      torch.cuda.synchronize()
							 | 
						||
| 
								 | 
							
								      et = time.perf_counter() - st
							 | 
						||
| 
								 | 
							
								      print(f"TFLOPS {2*M*N*K*1e-12/et:.2f}")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  # **** tinygrad test ****
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  compiled = triton_compile(ASTSource(matmul_kernel, "*fp16,*fp16,*fp16",
							 | 
						||
| 
								 | 
							
								                            attrs=AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=()),
							 | 
						||
| 
								 | 
							
								                            constants={"BLOCK_SIZE_M": BLOCK_SIZE_M, "BLOCK_SIZE_N": BLOCK_SIZE_N, "BLOCK_SIZE_K": BLOCK_SIZE_K}))
							 | 
						||
| 
								 | 
							
								  print(compiled.metadata)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  A, B = Tensor.normal(M, K, std=1e-1, dtype=dtypes.float16).realize(), Tensor.normal(K, N, std=1e-1, dtype=dtypes.float16).realize()
							 | 
						||
| 
								 | 
							
								  C = A.matmul(B)
							 | 
						||
| 
								 | 
							
								  sched = C.schedule()
							 | 
						||
| 
								 | 
							
								  si = sched[-1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  src = compiled.asm["ptx"]
							 | 
						||
| 
								 | 
							
								  # specify the shared memory here so we don't need to do it dynamically
							 | 
						||
| 
								 | 
							
								  src = src.replace(".extern .shared .align 16 .b8 global_smem[];", f".shared .align 16 .b8 global_smem[{compiled.metadata.shared}];")
							 | 
						||
| 
								 | 
							
								  # useless comment spam
							 | 
						||
| 
								 | 
							
								  src = src.replace("\t// begin inline asm\n", "")
							 | 
						||
| 
								 | 
							
								  src = src.replace("\t// end inline asm\n", "")
							 | 
						||
| 
								 | 
							
								  # remove debug sections
							 | 
						||
| 
								 | 
							
								  src = src.split("\t.file")[0]
							 | 
						||
| 
								 | 
							
								  assert '.extern .shared' not in src
							 | 
						||
| 
								 | 
							
								  prg = ProgramSpec("matmul_kernel", src, device=Device.DEFAULT,
							 | 
						||
| 
								 | 
							
								                global_size=[M//BLOCK_SIZE_M, N//BLOCK_SIZE_N, 1], local_size=[32*compiled.metadata.num_warps, 1, 1],
							 | 
						||
| 
								 | 
							
								                mem_estimate=A.nbytes() + B.nbytes() + C.nbytes())
							 | 
						||
| 
								 | 
							
								  ei = ExecItem(CompiledRunner(prg), [x.ensure_allocated() for x in si.bufs], si.metadata)
							 | 
						||
| 
								 | 
							
								  tflops = []
							 | 
						||
| 
								 | 
							
								  for i in range(5):
							 | 
						||
| 
								 | 
							
								    tm = ei.run(wait=True)
							 | 
						||
| 
								 | 
							
								    tflops.append((2*M*K*N/tm)*1e-12)
							 | 
						||
| 
								 | 
							
								  print(f"TFLOPS: {max(tflops):.2f}")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  # check correctness
							 | 
						||
| 
								 | 
							
								  if getenv("VERIFY"):
							 | 
						||
| 
								 | 
							
								    from tinygrad.engine.realize import run_schedule
							 | 
						||
| 
								 | 
							
								    triton_buf = np.frombuffer(si.bufs[0].as_buffer(), np.float16).reshape(M,N)
							 | 
						||
| 
								 | 
							
								    print(triton_buf)
							 | 
						||
| 
								 | 
							
								    run_schedule(sched)
							 | 
						||
| 
								 | 
							
								    tinygrad_buf = np.frombuffer(si.bufs[0].as_buffer(), np.float16).reshape(M,N)
							 | 
						||
| 
								 | 
							
								    print(tinygrad_buf)
							 | 
						||
| 
								 | 
							
								    np.testing.assert_allclose(triton_buf, tinygrad_buf)
							 | 
						||
| 
								 | 
							
								    print("correct!")
							 |