openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

223 lines
10 KiB

#!/usr/bin/env python3
import os
from math import fabs, exp
from opendbc.car import get_safety_config, get_friction, structs
from opendbc.car.common.basedir import BASEDIR
from opendbc.car.common.conversions import Conversions as CV
from opendbc.car.gm.carcontroller import CarController
from opendbc.car.gm.carstate import CarState
from opendbc.car.gm.radar_interface import RadarInterface, RADAR_HEADER_MSG
from opendbc.car.gm.values import CAR, CarControllerParams, EV_CAR, CAMERA_ACC_CAR, SDGM_CAR, ALT_ACCS, CanBus, GMSafetyFlags
from opendbc.car.interfaces import CarInterfaceBase, TorqueFromLateralAccelCallbackType, FRICTION_THRESHOLD, LatControlInputs, NanoFFModel
TransmissionType = structs.CarParams.TransmissionType
NetworkLocation = structs.CarParams.NetworkLocation
NON_LINEAR_TORQUE_PARAMS = {
CAR.CHEVROLET_BOLT_EUV: [2.6531724862969748, 1.0, 0.1919764879840985, 0.009054123646805178],
CAR.GMC_ACADIA: [4.78003305, 1.0, 0.3122, 0.05591772],
CAR.CHEVROLET_SILVERADO: [3.29974374, 1.0, 0.25571356, 0.0465122]
}
NEURAL_PARAMS_PATH = os.path.join(BASEDIR, 'torque_data/neural_ff_weights.json')
class CarInterface(CarInterfaceBase):
CarState = CarState
CarController = CarController
RadarInterface = RadarInterface
@staticmethod
def get_pid_accel_limits(CP, current_speed, cruise_speed):
return CarControllerParams.ACCEL_MIN, CarControllerParams.ACCEL_MAX
# Determined by iteratively plotting and minimizing error for f(angle, speed) = steer.
@staticmethod
def get_steer_feedforward_volt(desired_angle, v_ego):
desired_angle *= 0.02904609
sigmoid = desired_angle / (1 + fabs(desired_angle))
return 0.10006696 * sigmoid * (v_ego + 3.12485927)
def get_steer_feedforward_function(self):
if self.CP.carFingerprint == CAR.CHEVROLET_VOLT:
return self.get_steer_feedforward_volt
else:
return CarInterfaceBase.get_steer_feedforward_default
def torque_from_lateral_accel_siglin(self, latcontrol_inputs: LatControlInputs, torque_params: structs.CarParams.LateralTorqueTuning,
lateral_accel_error: float, lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
def sig(val):
# https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick
if val >= 0:
return 1 / (1 + exp(-val)) - 0.5
else:
z = exp(val)
return z / (1 + z) - 0.5
# The "lat_accel vs torque" relationship is assumed to be the sum of "sigmoid + linear" curves
# An important thing to consider is that the slope at 0 should be > 0 (ideally >1)
# This has big effect on the stability about 0 (noise when going straight)
# ToDo: To generalize to other GMs, explore tanh function as the nonlinear
non_linear_torque_params = NON_LINEAR_TORQUE_PARAMS.get(self.CP.carFingerprint)
assert non_linear_torque_params, "The params are not defined"
a, b, c, _ = non_linear_torque_params
steer_torque = (sig(latcontrol_inputs.lateral_acceleration * a) * b) + (latcontrol_inputs.lateral_acceleration * c)
return float(steer_torque) + friction
def torque_from_lateral_accel_neural(self, latcontrol_inputs: LatControlInputs, torque_params: structs.CarParams.LateralTorqueTuning,
lateral_accel_error: float, lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
inputs = list(latcontrol_inputs)
if gravity_adjusted:
inputs[0] += inputs[1]
return float(self.neural_ff_model.predict(inputs)) + friction
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
if self.CP.carFingerprint == CAR.CHEVROLET_BOLT_EUV:
self.neural_ff_model = NanoFFModel(NEURAL_PARAMS_PATH, self.CP.carFingerprint)
return self.torque_from_lateral_accel_neural
elif self.CP.carFingerprint in NON_LINEAR_TORQUE_PARAMS:
return self.torque_from_lateral_accel_siglin
else:
return self.torque_from_lateral_accel_linear
@staticmethod
def _get_params(ret: structs.CarParams, candidate, fingerprint, car_fw, experimental_long, docs) -> structs.CarParams:
ret.brand = "gm"
ret.safetyConfigs = [get_safety_config(structs.CarParams.SafetyModel.gm)]
ret.autoResumeSng = False
ret.enableBsm = 0x142 in fingerprint[CanBus.POWERTRAIN]
if candidate in EV_CAR:
ret.transmissionType = TransmissionType.direct
ret.safetyConfigs[0].safetyParam |= GMSafetyFlags.EV.value
else:
ret.transmissionType = TransmissionType.automatic
ret.longitudinalTuning.kiBP = [5., 35.]
if candidate in (CAMERA_ACC_CAR | SDGM_CAR):
ret.experimentalLongitudinalAvailable = candidate not in SDGM_CAR
ret.networkLocation = NetworkLocation.fwdCamera
ret.radarUnavailable = True # no radar
ret.pcmCruise = True
ret.safetyConfigs[0].safetyParam |= GMSafetyFlags.HW_CAM.value
ret.minEnableSpeed = -1 if candidate in SDGM_CAR else 5 * CV.KPH_TO_MS
ret.minSteerSpeed = 10 * CV.KPH_TO_MS
# Tuning for experimental long
ret.longitudinalTuning.kiV = [2.0, 1.5]
ret.stoppingDecelRate = 2.0 # reach brake quickly after enabling
ret.vEgoStopping = 0.25
ret.vEgoStarting = 0.25
if experimental_long:
ret.pcmCruise = False
ret.openpilotLongitudinalControl = True
ret.safetyConfigs[0].safetyParam |= GMSafetyFlags.HW_CAM_LONG.value
if candidate in ALT_ACCS:
ret.experimentalLongitudinalAvailable = False
ret.openpilotLongitudinalControl = False
ret.minEnableSpeed = -1. # engage speed is decided by PCM
else: # ASCM, OBD-II harness
ret.openpilotLongitudinalControl = True
ret.networkLocation = NetworkLocation.gateway
ret.radarUnavailable = RADAR_HEADER_MSG not in fingerprint[CanBus.OBSTACLE] and not docs
ret.pcmCruise = False # stock non-adaptive cruise control is kept off
# supports stop and go, but initial engage must (conservatively) be above 18mph
ret.minEnableSpeed = 18 * CV.MPH_TO_MS
ret.minSteerSpeed = 7 * CV.MPH_TO_MS
# Tuning
ret.longitudinalTuning.kiV = [2.4, 1.5]
# These cars have been put into dashcam only due to both a lack of users and test coverage.
# These cars likely still work fine. Once a user confirms each car works and a test route is
# added to opendbc/car/tests/routes.py, we can remove it from this list.
ret.dashcamOnly = candidate in {CAR.CADILLAC_ATS, CAR.HOLDEN_ASTRA, CAR.CHEVROLET_MALIBU, CAR.BUICK_REGAL} or \
(ret.networkLocation == NetworkLocation.gateway and ret.radarUnavailable)
# Start with a baseline tuning for all GM vehicles. Override tuning as needed in each model section below.
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.00]]
ret.lateralTuning.pid.kf = 0.00004 # full torque for 20 deg at 80mph means 0.00007818594
ret.steerActuatorDelay = 0.1 # Default delay, not measured yet
ret.steerLimitTimer = 0.4
ret.longitudinalActuatorDelay = 0.5 # large delay to initially start braking
if candidate == CAR.CHEVROLET_VOLT:
ret.lateralTuning.pid.kpBP = [0., 40.]
ret.lateralTuning.pid.kpV = [0., 0.17]
ret.lateralTuning.pid.kiBP = [0.]
ret.lateralTuning.pid.kiV = [0.]
ret.lateralTuning.pid.kf = 1. # get_steer_feedforward_volt()
ret.steerActuatorDelay = 0.2
elif candidate == CAR.GMC_ACADIA:
ret.minEnableSpeed = -1. # engage speed is decided by pcm
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.BUICK_LACROSSE:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CADILLAC_ESCALADE:
ret.minEnableSpeed = -1. # engage speed is decided by pcm
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.CADILLAC_ESCALADE_ESV, CAR.CADILLAC_ESCALADE_ESV_2019):
ret.minEnableSpeed = -1. # engage speed is decided by pcm
if candidate == CAR.CADILLAC_ESCALADE_ESV:
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[10., 41.0], [10., 41.0]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.13, 0.24], [0.01, 0.02]]
ret.lateralTuning.pid.kf = 0.000045
else:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_BOLT_EUV:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_SILVERADO:
# On the Bolt, the ECM and camera independently check that you are either above 5 kph or at a stop
# with foot on brake to allow engagement, but this platform only has that check in the camera.
# TODO: check if this is split by EV/ICE with more platforms in the future
if ret.openpilotLongitudinalControl:
ret.minEnableSpeed = -1.
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_EQUINOX:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_TRAILBLAZER:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CADILLAC_XT4:
ret.steerActuatorDelay = 0.2
ret.minSteerSpeed = 30 * CV.MPH_TO_MS
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_VOLT_2019:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CHEVROLET_TRAVERSE:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.GMC_YUKON:
ret.steerActuatorDelay = 0.5
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
ret.dashcamOnly = True # Needs steerRatio, tireStiffness, and lat accel factor tuning
return ret