openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.

34 lines
1.3 KiB

from tinygrad.helpers import getenv
from tinygrad import dtypes, Tensor
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
CNT = getenv("CNT", 8)
BS = getenv("BS", 16)
CIN = getenv("CIN", 128)
COUT = getenv("COUT", 128)
HW = getenv("HW", 128)
K = getenv("K", 3)
PADDING = getenv("PADDING", 1)
COMP = getenv("COMP", 0)
ATOL = getenv("ATOL", 1e-4)
RTOL = getenv("RTOL", 3e-2)
FLOPS = BS*K*K*CIN*HW*HW*COUT*2
def rand_input(): return Tensor.rand(BS, CIN, HW, HW, dtype=dtype_in).realize(), Tensor.rand(COUT, CIN, K, K, dtype=dtype_in).realize()
if __name__ == "__main__":
a, b = rand_input()
for i in range(CNT):
if i > 0 and getenv("RAND", 0) != 0:
a, b = rand_input()
c = a.conv2d(b, padding=PADDING, acc_dtype=acc_dtype).realize()
if COMP:
import numpy as np, time, torch
torch_device = "cuda:0" if torch.cuda.is_available() else ("mps" if getenv("MPS", 0) else "cpu")
ta, tb = torch.from_numpy(a.numpy()).to(torch_device), torch.from_numpy(b.numpy()).to(torch_device)
tc = torch.nn.functional.conv2d(ta, tb, padding=PADDING)
np.testing.assert_allclose(c.numpy(), tc.cpu(), atol=ATOL, rtol=RTOL)