openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

728 lines
42 KiB

from __future__ import annotations
import itertools, functools
from dataclasses import dataclass
from collections import defaultdict
from typing import Optional, cast, Final, DefaultDict, Callable, Sequence
from enum import Enum, auto
from tinygrad.ops import GroupOp, KernelInfo, UOp, Ops, can_pad, print_uops, type_verify, resolve, Variable, sint, \
graph_rewrite, track_rewrites, view_left
from tinygrad.device import Device
from tinygrad.renderer import Renderer, TensorCore, ProgramSpec
from tinygrad.dtype import ImageDType
from tinygrad.helpers import all_same, colored, ansilen, dedup, getenv, prod, round_up, all_int, to_function_name, diskcache_put
from tinygrad.helpers import DEBUG, TC_OPT, USE_TC, AMX
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import strides_for_shape
from tinygrad.codegen.linearize import linearize_uop
from tinygrad.codegen.uopgraph import full_graph_rewrite
from tinygrad.codegen.lowerer import rewrite_shapetracker_with_index, get_contraction
class OptOps(Enum):
TC = auto(); UPCAST = auto(); UNROLL = auto(); LOCAL = auto() # noqa: E702
GROUP = auto(); GROUPTOP = auto(); NOLOCALS = auto(); PADTO = auto(); SWAP = auto() # noqa: E702
def __lt__(self, x:OptOps): return self.value < x.value
class KernelOptError(Exception): pass
def check(cond:bool, msg:str=""):
if not cond: raise KernelOptError(msg)
@dataclass(frozen=True, order=True)
class Opt:
op: OptOps
axis: Optional[int] = None
amt: Optional[int] = None
def __repr__(self): return f"Opt(op={self.op}, axis={self.axis}, amt={self.amt})"
def real_axis(self, k:Kernel):
if self.axis is None: return -1
if self.op is OptOps.UNROLL: return k.first_reduce+self.axis
if self.op in {OptOps.GROUP, OptOps.GROUPTOP}: return k.first_reduce+k.group_for_reduces+self.axis
return self.axis
@dataclass
class TensorCoreOptions:
axes: tuple[int, ...] # the location of the original N and M axes if still in the shape
axes_exist: tuple[bool, ...] # true if the original N and M axes are still in the shape
axis_pads: tuple[tuple[int, int], ...]
def fix_axes(self, removed_axis:int): # adjust the TC axes if necesssary when a dimension is removed
axes, axes_exist = list(self.axes), list(self.axes_exist)
for tc_dim in [i for i in range(2) if axes_exist[i]]:
if removed_axis < axes[tc_dim]: axes[tc_dim] -= 1
elif removed_axis == axes[tc_dim]: axes_exist[tc_dim] = False
self.axes, self.axes_exist = tuple(axes), tuple(axes_exist)
class Kernel:
def __init__(self, ast:UOp, opts:Optional[Renderer]=None):
if ast.op is Ops.SINK: self.ast = ast
self.opts = opts if opts is not None else Device[Device.DEFAULT].renderer
try: uop_sts_map = verify_ast(self.ast)
except AssertionError as e:
print("INVALID AST")
print(self.ast)
raise e
self.reduceops = [x for x in self.ast.toposort if x.op is Ops.REDUCE_AXIS]
self.vars: list[Variable] = self.ast.variables()
# NOTE: this requires a specific order with the [::-1], this is likely a bug
self.bufs: list[UOp] = [x for x in self.ast.toposort if x.op in GroupOp.Buffer][::-1]
# get earlybufs, before any reduceops
earlybufs: list[UOp] = [x for reduceop in self.reduceops for x in reduceop.src[0].toposort if x.op in GroupOp.Buffer]
self.full_buf_index: int = self.bufs.index(earlybufs[0]) if earlybufs else 0
# NOTE: full_shape can be wrong if there's a tree of reduces
# create new shapetrackers inside this kernel, we will permute them
self.sts: list[ShapeTracker] = [x.st_arg for x in self.bufs]
# add the shapetrackers for each reduce
# we use this to track which axes are reduced in each reduce
for x in self.reduceops:
self.sts.append(uop_sts_map[x])
self.sts.append(uop_sts_map[x.src[0]])
# move all reduce axes to the end
reduce = list(enumerate(zip(self.full_shape, self.output_shape)))
permute = tuple([i for i,(s,n) in reduce if not resolve(s != n)] + [i for i,(s,n) in reduce if resolve(s != n)])
self.reshape_and_permute(None, permute)
# parameters for optimization
self.applied_opts: list[Opt] = []
self.group_for_reduces: int = 0
self.upcasted: int = 0
self.local_dims: int = 0
self.tensor_core: Optional[TensorCore] = None
self.tensor_core_opts: Optional[TensorCoreOptions] = None
self.use_tensor_cores: int = 0
self.dont_use_locals: bool = False
# group simplifies
self.simplify_ones()
self.simplify_merge_adjacent()
def copy(self):
ret = type(self).__new__(type(self))
# base linearizer params
ret.opts, ret.ast = self.opts, self.ast
# things downstream of the AST
ret.reduceops, ret.vars, ret.bufs, ret.full_buf_index = self.reduceops, self.vars, self.bufs, self.full_buf_index
ret.sts = self.sts[:len(ret.bufs)+len(ret.reduceops)*2] # NOTE: must redo the local buffers with TC in beam
# parameters for optimizations
ret.applied_opts, ret.group_for_reduces, ret.upcasted, ret.local_dims, ret.dont_use_locals = \
self.applied_opts[:], self.group_for_reduces, self.upcasted, self.local_dims, self.dont_use_locals
ret.tensor_core, ret.tensor_core_opts, ret.use_tensor_cores = self.tensor_core, self.tensor_core_opts, self.use_tensor_cores
return ret
@property
def membufs(self) -> list[UOp]: return dedup([x.src[0] for x in self.bufs if x.op in {Ops.LOAD, Ops.STORE}])
# TODO: these need more tests or it might silently be no-op
def float4_axis(self, i:int): return [x-self.first_upcast for x in self.sts[i].unit_stride_axes() if x >= self.first_upcast and self.sts[i].shape[x]%4 == 0] # noqa: E501
def upcasted_axis(self, i:int) -> list[tuple[int, Optional[sint], bool]]:
upcasted_shape, upcasted_stride = self.sts[i].shape[self.first_upcast:], self.sts[i].real_strides()[self.first_upcast:]
assert all_int(upcasted_shape), f"cannot upcast a symbolic amount {upcasted_shape=}"
return list(zip(upcasted_shape, upcasted_stride,
[x!=y for x,y in zip(self.sts[0].shape[self.first_upcast:], self.full_shape[self.first_upcast:])]))
@property
def first_reduce(self) -> int:
return [resolve(x!=y) for x,y in zip(self.sts[0].shape[:self.first_upcast]+(0,), self.full_shape[:self.first_upcast]+(1,))].index(True)
@property
def first_upcast(self) -> int: return self.shape_len-self.upcasted
@property
def reduceop(self) -> UOp|None: return self.reduceops[0] if len(self.reduceops) > 0 else None
@property
def output_shape(self) -> tuple[sint, ...]: return self.sts[0].shape
@property
def full_shape(self) -> tuple[sint, ...]: return self.sts[self.full_buf_index].shape
@property
def full_unupcasted_shape(self) -> tuple[sint, ...]: return self.full_shape[:self.first_upcast]
@property
def shape_len(self) -> int: return len(self.sts[0].shape)
@property
def global_dims(self) -> int: return self.first_reduce-self.local_dims
# there's eight chunks of the shape
# blue -- global dims
# cyan -- local dims (warp ones first)
# *** self.first_reduce
# green -- reduce-local dims
# red -- reduce loops
# *** self.upcasted
# purple -- reduce upcasted
# yellow -- normal upcasted dimensions
def colors(self) -> list[str]:
# first non local non reduce dims are global (blue)
colors = ["blue"] * self.global_dims if not self.dont_use_locals else ["BLUE"] * self.global_dims
# after global are local_dims; warp ones used in tensor cores must be closest to first_reduce (cyan)
colors += ["cyan"] * self.local_dims
# between first_reduce and first_reduce + group_for_reduces, they are late upcasted (green)
colors += ["green"] * self.group_for_reduces
# between first_reduce + group_for_reduces and upcasted, they are reduce (red)
colors += ["red"] * (self.first_upcast - (self.first_reduce + self.group_for_reduces))
# upcasted dimensions are reduce (magenta) or normal (yellow)
colors += ["magenta" if self.full_shape[i] != self.sts[0].shape[i] else "yellow" for i in range(self.first_upcast, self.shape_len)]
assert len(colors) == self.shape_len, "colors size mismatch"
return colors
def colored_shape(self, pad:Optional[int]=None, dense=False) -> str:
shape_strs = [(s if dense else f"{s:4d}") if isinstance(s, int) else s.render() for s in self.full_shape]
ret = ' '.join(colored(s, color) for s,color in zip(shape_strs, self.colors()))
if pad: ret += ' '*(pad-ansilen(ret))
return ret
# ******************** base simplifiers ********************
# apply reshape and permute to all shapetrackers
def reshape_and_permute(self, new_shape_fxn:Optional[Callable[[tuple[sint, ...]], Sequence[sint]]], axis:Optional[Sequence[int]]):
def reshape(st:ShapeTracker): return st.reshape(tuple(new_shape_fxn(st.shape))) if new_shape_fxn is not None else st
def permute(st:ShapeTracker): return st.permute(tuple(axis)) if axis is not None else st
self.sts = [permute(reshape(st)) for st in self.sts]
# drops the final dimension
def upcast(self):
check(self.full_shape[-1] != 1, "can't upcast a dimension with size 1")
self.upcasted += 1
# axis : the axis to pull from
# amount : the amount to take
# top : if you want to pull that amount from the top
# insert_before : place to insert the new stuff
def shift_to(self, axis, amount, top=False, insert_before=None):
if insert_before is None: insert_before = self.shape_len
move_axis = axis if top else axis+1
if move_axis < insert_before: insert_before += 1
self.reshape_and_permute(
lambda x: x[0:axis] + (((amount, x[axis]//amount) if top else (x[axis]//amount, amount)) if x[axis] > 1 else (1,1)) + x[axis+1:],
[i for i in range(insert_before) if i != move_axis] + [move_axis] + [i for i in range(insert_before, self.shape_len+1) if i != move_axis])
# ******************** complex simplifiers ********************
def simplify_ones(self) -> bool:
# remove places where the shape is all ones
# TODO: this should be factored in to multi shape stride
if self.shape_len == 0: return False
all_ones = [s==1 for s in self.full_shape]
self.local_dims -= sum(all_ones[self.first_reduce-self.local_dims:self.first_reduce])
self.upcasted -= sum(all_ones[self.first_upcast:]) # TODO: no necessary since upcasted axis can't be un-upcasted
self.reshape_and_permute(lambda shape: [x for i,x in enumerate(shape) if not all_ones[i]], None)
return any(all_ones)
def simplify_merge_adjacent(self):
if self.shape_len == 0: return
shapes, strides = [x.shape for x in self.sts], [x.real_strides() for x in self.sts]
# if it's an image, insert fake strides such that this fusion doesn't happen across image axes
if isinstance(self.membufs[0].dtype, ImageDType):
base_shape = self.membufs[0].dtype.shape
if shape_idx_groups := get_contraction(self.output_shape, base_shape):
special_strides: tuple[sint, ...] = tuple()
for i,g in enumerate(shape_idx_groups):
shape_piece = tuple(self.output_shape[x] for x in g)
assert prod(shape_piece) == base_shape[i], f"get_contraction was wrong? {shape_piece} != {base_shape[i]}"
special_strides += strides_for_shape(shape_piece)
# adding the fake image shape
shapes.append(self.output_shape)
strides.append(special_strides)
# merge dimensions if we can, multi _merge_dims
# NOTE: this does not always preserve the reduce dimension
# TODO: move this into shapetracker, with tests!
# TODO: how does this work with multi-reduce?
rets = [[(s[0], st[0])] for s,st in zip(shapes, strides)]
for i in range(1, len(shapes[0])):
can_merge = []
for s,st,ret in zip(shapes, strides, rets):
# TODO: added the always mergeability of 1s, is this right? if so, add to shapetracker in the 1 case
si, sti, last_st = s[i], st[i], ret[-1][1]
can_merge.append((sti is not None) and ((sti != 0 and last_st == si*sti) or (sti == 0 and last_st == 0)))
# more can merge than this
mergeable = all(can_merge) and i != self.first_reduce
for j,(s,st) in enumerate(zip(shapes, strides)):
if mergeable: rets[j][-1] = (rets[j][-1][0] * s[i], st[i])
else: rets[j].append((s[i], st[i]))
# do the reshapes
for i,x in enumerate(rets[:len(self.sts)]): self.sts[i] = self.sts[i].reshape(tuple([y[0] for y in x]))
# ******************** high level optimizers ********************
def _create_tc_opts(self, reduceop:UOp, tc:TensorCore, axis:int, opt_level:int) -> Optional[TensorCoreOptions]:
has_cast = tc.dtype_in != tc.dtype_out
if has_cast and not (reduceop.src[0].op is Ops.CAST and reduceop.src[0].dtype == tc.dtype_out): return None
mul_op = reduceop.src[0].src[0] if has_cast else reduceop.src[0]
if mul_op.op is not Ops.MUL: return None
def buf_index(src:UOp) -> Optional[int]:
# TODO: apply tc even if the sources are not from LOAD
if src.op is Ops.LOAD and src.dtype == tc.dtype_in: return self.bufs.index(src)
try:
if opt_level >= 1 and src.op is Ops.CAST and src.dtype == tc.dtype_in: return self.bufs.index(src.src[0])
except ValueError: return None
return None
if (buf0:=buf_index(mul_op.src[0])) is None or (buf1:=buf_index(mul_op.src[1])) is None: return None
buf0_strides, buf1_strides = self.sts[buf0].real_strides(), self.sts[buf1].real_strides()
axis_buf0 = [(i,self.full_shape[i],buf1_strides[i]) for i,s in enumerate(buf0_strides[:self.first_reduce]) if s == 0]
axis_buf1 = [(i,self.full_shape[i],buf0_strides[i]) for i,s in enumerate(buf1_strides[:self.first_reduce]) if s == 0]
if not (axis_buf0 and axis_buf1 and ((self.shape_len-self.first_reduce) == 1 or (opt_level >= 1))): return None
axis_choices = list(itertools.product(axis_buf0, axis_buf1, range(self.first_reduce, self.shape_len)))
if not (axis < len(axis_choices)): return None
s0, s1, s2 = axis_choices[-(axis+1)][0][0], axis_choices[-(axis+1)][1][0], axis_choices[-(axis+1)][2] # s0 is n, s1 is m, s2 is k
axis_pads = tuple((x, tc.dims[i]) for i, x in enumerate([s0, s1, s2]) if resolve(self.full_shape[x]%tc.dims[i] != 0))
if axis_pads and (opt_level < 2): return None
if DEBUG >= 3: print("TENSOR CORES", axis_buf0, axis_buf1, tc)
return TensorCoreOptions(axes=(s0, s1, s2), axes_exist=(True, True), axis_pads=axis_pads)
def _apply_tc_opt(self, use_tensor_cores:int, axis:int, opt_level:int) -> bool:
if use_tensor_cores and self.reduceop is not None and self.reduceop.arg[0] is Ops.ADD:
for tc in self.opts.tensor_cores:
tensor_core_opts = [self._create_tc_opts(reduceop, tc, axis, opt_level) for reduceop in self.reduceops]
# can only fuse reduces with the same tc options
assert all_same(tensor_core_opts)
if tensor_core_opts[0] is None: continue
# tensor core -- unroll the reduce dim, upcast input and local the correct thread pattern
self.tensor_core_opts = tc_opts = tensor_core_opts[0]
# attempt to pad the tensor axes that require it
try:
for axis, dim in tc_opts.axis_pads: self.apply_opt(Opt(OptOps.PADTO, axis, dim), append_opt=False) # PADTO might fail
except KernelOptError: continue
for tc_dim, amt in tc.reduce_axes: self.apply_opt(Opt(OptOps.UNROLL,tc_opts.axes[2]-self.first_reduce,amt), append_opt=False)
for opt in tc.opts_seq:
if opt == "UP":
for tc_dim, amt in tc.early_upcast_axes: self.apply_opt(Opt(OptOps.UPCAST,tc_opts.axes[tc_dim],amt), append_opt=False)
elif opt == "LC":
for tc_dim, amt in tc.threads: self.apply_opt(Opt(OptOps.LOCAL,tc_opts.axes[tc_dim],amt), append_opt=False)
self.tensor_core = tc
self.use_tensor_cores = use_tensor_cores # TC=2 will do the shape ops without the WMMA
return True
return False
def apply_tensor_cores(self, use_tensor_cores=1, extra_opts:Optional[list[Opt]]=None, axis:int=0, tc_opt:Optional[int]=None) -> bool:
""" Attempts to apply a tensor core optimization to the kernel. If one exists and applies properly, return true, otherwise return false.
Tensor cores are optimized instructions that matrix multiply-accumulate across a wave of threads: D(M, N) = A(M, K) * B(K, N) + C(M, N).
Keyword arguments:
use_tensor_cores -- controls how tensor cores are applied (default 1)
0: will disable any tensor core matching
1: enable tensor cores
2: apply tensor core shape but don't use UOp.WMMA
extra_opts -- additional Opt's to apply after the tensor core instead of the hand-coded additional Opt's (default None)
tc_opt -- controls which kinds of kernels may be eligible for tensor cores application (default 2 during BEAM, 0 otherwise)
0: applies to only kernels with a single reduce axis and direct UOps.LOAD into Ops.MUL
1: allows kernels with multiple reduce axes and also multiplication of UOps.CAST'd buffers
2: allows kernels with M, N, K axes that are not multiples of the tensor core dimensions by applying padding those axes as needed
"""
if tc_opt is None: tc_opt = TC_OPT.value
if not self.opts.tensor_cores and use_tensor_cores != 2: return False
try: # check TC first and apply hand-coded opts if successful
self.apply_opt(Opt(OptOps.TC, axis, tc_opt))
if (tc_opts:=self.tensor_core_opts) is not None:
if extra_opts is not None:
for opt in extra_opts: self.apply_opt(opt)
else:
if (self.opts.device == "CLANG" and AMX): return True # skip hand-coded TC opts if AMX, upcasting will make kernel slower
# hand-coded TC opts
for tc_dim in [tc_dim for tc_dim in [1,0] if tc_opts.axes_exist[tc_dim]]: # attempt to upcast M and N
szs = [sz for sz in [5,4,3,2] if self.full_shape[tc_opts.axes[tc_dim]] % sz == 0]
if szs: self.apply_opt(Opt(OptOps.UPCAST, tc_opts.axes[tc_dim], szs[0]))
if tc_opts.axes_exist[0] and (szs := [sz for sz in [4,2] if self.full_shape[tc_opts.axes[0]] % sz == 0]): # attempt to local N
self.apply_opt(Opt(OptOps.LOCAL, tc_opts.axes[0], szs[0]))
return True
except KernelOptError:
return False
def apply_opt(self, opt:Opt, append_opt:bool=True):
if self.dont_use_locals: check(opt.op not in {OptOps.LOCAL, OptOps.GROUP, OptOps.GROUPTOP}, "not using locals")
if opt.op is OptOps.TC:
check(len(self.applied_opts) == 0, "tensor core opts must be first") # TODO: things like PADTO might be fine
check(opt.axis is not None and opt.amt is not None, "tensor core opts must have an axis and amt")
check((use_tensor_cores:=USE_TC.value) == 2 or len(self.opts.tensor_cores) > 0, "must have tensor cores or TC=2")
check(self._apply_tc_opt(use_tensor_cores, cast(int, opt.axis), cast(int, opt.amt)), "no tensor core available")
self.applied_opts.append(opt)
return
axis = opt.real_axis(self)
check(axis < len(self.full_shape), "invalid axis")
if opt.op is OptOps.SWAP: amt = cast(int, opt.amt) # amt is an axis in the SWAPs
elif opt.amt is not None:
amt = opt.amt if opt.amt != 0 else self.full_shape[axis]
check(isinstance(amt, int) and amt != 1, "shift/padto of amt 1 or Node is meaningless")
if opt.op is not OptOps.PADTO: check(self.full_shape[axis] % amt == 0, "no longer valid shift")
else: amt = -1
if self.reduceop is not None and (opt.op in {OptOps.GROUP, OptOps.GROUPTOP} or \
(self.group_for_reduces and opt.op not in {OptOps.NOLOCALS, OptOps.PADTO})):
acc_sz = self.reduceop.dtype.itemsize
upcast_sz = prod([a for a,b in zip(self.full_shape[self.first_upcast:], self.sts[0].shape[self.first_upcast:]) if a == b])
local_sz = prod(self.full_shape[self.first_reduce-self.local_dims:self.first_reduce+self.group_for_reduces])
smem_sz = amt*acc_sz*upcast_sz*local_sz
check(smem_sz <= self.opts.shared_max, f"exceeds maximum shared memory size: needs {smem_sz}, max {self.opts.shared_max}")
if opt.op is OptOps.LOCAL: # cyan
check(self.opts.has_local, "target does not support local")
check(axis < self.global_dims, "local is for globals")
self.shift_to(axis, amt, insert_before=self.first_reduce)
self.local_dims += 1
elif opt.op in {OptOps.GROUP, OptOps.GROUPTOP}: # green
check(self.opts.has_local and self.opts.has_shared, "target does not support local or shared mem")
check(self.first_reduce + self.group_for_reduces <= axis < self.first_upcast, "must be reduce axis to group")
check(not self.tensor_core, "can't group with tensor cores")
check(len(reduce_axes:=[i for r in self.reduceops for i in r.axis_arg]) == len(set(reduce_axes)), "can't group with parallel reduces")
self.shift_to(axis, amt, top=(opt.op is OptOps.GROUPTOP), insert_before=self.first_reduce + self.group_for_reduces)
self.group_for_reduces += 1
elif opt.op is OptOps.UNROLL: # purple
check(axis < self.first_upcast, "can't upcasted already upcasted")
check(amt <= 32, "don't unroll more than 32")
# TODO: fix upcast_count to put purples before yellows. broken because of METAL tensor cores
#upcast_count = sum(x == y for x,y in zip(self.full_shape[-self.upcasted:], self.output_shape[-self.upcasted:])) if self.upcasted else 0
#self.shift_to(axis, amt, insert_before=None if upcast_count == 0 else self.shape_len-upcast_count)
if self.full_shape[axis] == amt and axis == self.first_reduce: self.local_dims += 1 # first_reduce will ++, so offset loss in simplify_ones
if self.full_shape[axis] == amt and axis < self.first_reduce+self.group_for_reduces: self.group_for_reduces -= 1 # fully unrolling a GROUP
self.shift_to(axis, amt, insert_before=None)
self.upcast()
elif opt.op is OptOps.UPCAST: # yellow
check(axis < self.first_reduce, "upcast is for non-reduce")
check(not (self.tensor_core and self.global_dims <= axis < self.global_dims+len(self.tensor_core.threads)), "can't upcast TC locals")
check(amt <= 16, "don't upcast more than 16")
self.shift_to(axis, amt, insert_before=None)
self.upcast()
elif opt.op is OptOps.NOLOCALS:
check(self.opts.has_local and not self.dont_use_locals, "NOLOCALS is meaningless if target does not support local or already not using locals")
check(self.local_dims == 0 and self.group_for_reduces == 0, "can't have no locals with locals")
self.dont_use_locals = True
elif opt.op is OptOps.SWAP:
check(axis < amt < self.global_dims, f"swap is only for globals with axis < amt, getting {amt=}, {axis=}, {self.global_dims=}")
permute = list(range(self.shape_len))
permute[axis], permute[amt] = permute[amt], permute[axis]
self.reshape_and_permute(None, tuple(permute))
elif opt.op is OptOps.PADTO:
check(not self.vars, "does not work with symbolic shape")
check(axis < self.first_upcast, "cannot pad upcasted")
# ok to pad SUM if all parent ALU ops have f(0) = 0
if (r:=self.reduceop) is not None and self.first_reduce <= axis: check(r.arg[0] is Ops.ADD and can_pad(r, {}, set()), f"cannot pad {r}")
padded = False
for i,st in enumerate(self.sts):
if (s:=st.shape[axis]) == 1: continue # reduced
check(s > amt//4, f"pad adds more than quadruple the work {st.shape[axis]=} > {amt//4=}")
if (ru := round_up(cast(int, s), amt) - s):
# pad right seems to be faster
self.sts[i] = st.pad(((0,0),) * axis + ((0,ru),) + ((0,0),) * (len(st.shape)-axis-1))
padded = True
check(padded, "nothing was padded")
if append_opt: self.applied_opts.append(opt)
if self.simplify_ones() and self.tensor_core_opts:
self.tensor_core_opts.fix_axes(axis) # fix up axes in TC opts if required after simplify_ones()
def required_optimizations(self) -> Kernel:
if isinstance(self.membufs[0].dtype, ImageDType):
unit_stride_axes_mul_4 = [i for i in self.sts[0].unit_stride_axes(ignore_valid=True) if self.sts[0].shape[i]%4 == 0]
assert unit_stride_axes_mul_4, f"needs a unit stride axis in {self.bufs[0]}"
if all(x < self.first_upcast for x in unit_stride_axes_mul_4): self.apply_opt(Opt(OptOps.UPCAST, unit_stride_axes_mul_4[0], 4))
return self
def hand_coded_optimizations(self) -> Kernel:
self.required_optimizations()
# should use matvec - TODO: adjust/tune based on the wide vs tall/large vs small mat
MV_BLOCKSIZE, MV_THREADS_PER_ROW, MV_ROWS_PER_THREAD = getenv("MV_BLOCKSIZE", 4), getenv("MV_THREADS_PER_ROW", 8), getenv("MV_ROWS_PER_THREAD", 4)
if self.opts.has_local and getenv("MV",1) != 0 and (MV_BLOCKSIZE > 1 or MV_THREADS_PER_ROW > 1 or MV_ROWS_PER_THREAD > 1) and \
self.reduceop is not None and self.reduceop.arg[0] is Ops.ADD and len(self.full_shape) >= 2 and self.opts.has_shared and \
(mulop:=self.reduceop.src[0]).op is Ops.MUL and mulop.src[0].op is Ops.LOAD and mulop.src[1].op is Ops.LOAD:
st0, st1 = self.sts[self.bufs.index(mulop.src[0])], self.sts[self.bufs.index(mulop.src[1])]
strides0, strides1 = st0.real_strides(), st1.real_strides()
def has_expanded_axis(shape, strides): return any(resolve(s > 1) and not resolve(st != 0) for s,st in zip(shape,strides))
if strides0[self.first_reduce] == 1 and not (has_expanded_axis(st0.shape, strides0) and has_expanded_axis(st1.shape, strides1)):
for global_idx in range(self.global_dims):
if self.full_shape[self.first_reduce]%MV_THREADS_PER_ROW == 0 and self.full_shape[global_idx]%(MV_BLOCKSIZE*MV_ROWS_PER_THREAD) == 0:
if DEBUG >= 3:
print(f"MATVEC: {self.full_shape=} {self.first_reduce=} {strides0=} {MV_BLOCKSIZE=} {MV_THREADS_PER_ROW=} {MV_ROWS_PER_THREAD=}")
if MV_THREADS_PER_ROW > 1: self.apply_opt(Opt(OptOps.GROUP, 0, MV_THREADS_PER_ROW))
if MV_BLOCKSIZE > 1: self.apply_opt(Opt(OptOps.LOCAL, global_idx, MV_BLOCKSIZE))
if MV_ROWS_PER_THREAD > 1: self.apply_opt(Opt(OptOps.UPCAST, global_idx, MV_ROWS_PER_THREAD))
return self
if self.opts.has_local and self.opts.has_shared and all_int(self.sts[0].shape[:self.first_reduce]):
# are we grouping? (requires local shape support)
if not self.float4_axis(0) and self.first_reduce <= 2 and self.first_reduce + 1 <= self.shape_len and prod(self.sts[0].shape[:self.first_reduce]) <= 2048: # noqa: E501
# TODO: use 1024 if it's allowed in a smarter way
for sz in ([256, 16] if prod(self.sts[0].shape[:self.first_reduce]) <= 32 else [16]):
if all(st.shape[self.first_reduce] % sz == 0 or st.shape[self.first_reduce] == 1 for st in self.sts):
try: # may fail due to excessive smem usage
self.apply_opt(Opt(OptOps.GROUPTOP, 0, sz))
break
except KernelOptError: pass
# upcast float4 images
for buf_index,buf in enumerate(self.bufs):
unit_stride_axes_mul_4 = [i for i in self.sts[buf_index].unit_stride_axes(ignore_valid=True) if self.sts[buf_index].shape[i]%4 == 0]
if buf.src[0].dtype.__class__ is ImageDType:
#assert len(unit_stride_axes_mul_4) >= 1, f"needs a unit stride axis in {self.bufs[buf_index]}"
if len(unit_stride_axes_mul_4) and all(x < self.first_upcast for x in unit_stride_axes_mul_4):
if unit_stride_axes_mul_4[0] < self.first_reduce:
self.apply_opt(Opt(OptOps.UPCAST, unit_stride_axes_mul_4[0], 4))
else:
self.apply_opt(Opt(OptOps.UNROLL, unit_stride_axes_mul_4[0]-self.first_reduce, 4))
# no more opt if we are grouping
if self.group_for_reduces: return self
# **** below this line need to be optional and benchmarked ****
# TODO: doing extra upcasts with images doesn't work for some reason (maybe has to do with to_image_idx)
# to trigger the above bug, remove prod(self.full_shape[self.first_upcast:]) from the below
# expression and run test/test_ops.py with IMAGE=2
# if there are small dims with lots of valid masks, upcast them (they might be from Tensor.stack)
# this can be made much smarter
to_upcast: list[int] = []
# upcast leading axes first (hack-ish for winograd; we actually want to upcast masked axes with low stride first)
for axis in range(self.first_reduce):
# we might want to be able to split axes that are masked, or refuse to merge them in simplify_merge_adjacent
# for now skip upcasting here if there is a symbolic axis
if isinstance(self.full_shape[axis], int) and self.full_shape[axis] <= 7 and any(st.axis_is_masked(axis) for st in self.sts) and \
prod(self.full_shape[self.first_upcast:]) * prod(self.full_shape[j] for j in to_upcast) * self.full_shape[axis] <= 7 * 7:
if DEBUG >= 4: print(f"upcasting masked axis : {axis}")
to_upcast.append(axis)
for axis in to_upcast[::-1]: self.apply_opt(Opt(OptOps.UPCAST, axis, 0))
# potentially do more upcasts of non reduce axes based on a heuristic
upcasted_axis = set()
while resolve(prod(self.sts[0].shape[:self.first_reduce]) >= 1024):
xb_choices = []
for axis, upcast_amount in itertools.product(range(self.first_reduce), [3,4]): # consider all the non reduce axes, and a 3 or 4 reduce
# if we haven't upcasted it, it's not symbolic, it mods, and buffer has stride 0 on axis while having no stride 0 in the upcasted axis already
if axis not in upcasted_axis and isinstance(self.full_shape[axis], int) and self.full_shape[axis]%upcast_amount == 0 and any(st.views[-1].strides[axis] == 0 and not any(x[1] == 0 for x in self.upcasted_axis(buf_index)) for buf_index, st in enumerate(self.sts)): # noqa: E501
xb_choices.append((sum(st.views[-1].strides[axis]>0 for st in self.sts), sum(st.views[-1].strides[axis] for st in self.sts), axis, upcast_amount)) # noqa: E501
if xb_choices:
xb_choices = sorted(xb_choices)
if DEBUG >= 4: print(f"float4 merging axis : {xb_choices}")
self.apply_opt(Opt(OptOps.UPCAST, xb_choices[0][2], xb_choices[0][3]))
upcasted_axis.add(xb_choices[0][2])
else: break
# if last dim is small(ish) and it's a reduce dim, upcast the reduce (loop unrolling). no simplify needed since it's just an upcast.
if self.first_reduce < self.first_upcast and (prod(self.full_shape[self.first_upcast:]) <= 4 or not any(r for _,_,r in self.upcasted_axis(self.full_buf_index))) and (self.upcasted == 0 or prod(self.full_shape[-self.upcasted:]) < 64): # noqa: E501
if isinstance(s:=self.full_unupcasted_shape[-1], int) and s <= 32: # NOTE: cannot loop unroll symbolic axis
self.apply_opt(Opt(OptOps.UNROLL, len(self.full_unupcasted_shape)-1-self.first_reduce, 0))
# if it's small, upcast a second reduce dimension too
if self.first_reduce < self.first_upcast and s <= 3 and isinstance(s2:=self.full_unupcasted_shape[-1], int) and s2 <= 3:
self.apply_opt(Opt(OptOps.UNROLL, len(self.full_unupcasted_shape)-1-self.first_reduce, 0))
else:
for splits in [4]:
if self.full_unupcasted_shape[-1]%splits == 0:
self.apply_opt(Opt(OptOps.UNROLL, len(self.full_unupcasted_shape)-1-self.first_reduce, splits))
break
# if nothing at all is upcasted and it's easy to, do an upcast
# TODO: this is breaking the tests
for splits in [4]:
if self.upcasted == 0 and self.full_unupcasted_shape and self.full_unupcasted_shape[-1] % splits == 0:
self.apply_opt(Opt(OptOps.UPCAST, len(self.full_unupcasted_shape)-1, splits))
# **** local groups ****
if self.opts.has_local:
if getenv("NOLOCALS") and self.local_dims == 0 and not self.group_for_reduces:
self.apply_opt(Opt(OptOps.NOLOCALS))
else:
# prioritize making expand axes local
local_axis_ranking = [(any(self.sts[buf_index].views[-1].strides[axis] == 0 for buf_index in range(len(self.sts))), axis) for axis in range(len(self.full_shape[:self.first_reduce]))] # noqa: E501
to_local: list[tuple[int, int]] = []
for _, axis in sorted(local_axis_ranking, key=lambda x: (-x[0], -x[1])):
local_size = prod(sz for _, sz in to_local)
local_sz: Optional[int] = next((x for x in ([32] * (axis == 0) + [16, 8, 4, 3, 2]) if self.full_shape[axis] % x == 0 and local_size * x <= 128), None) # noqa: E501
if local_sz is not None: to_local.append((axis, local_sz))
deleted_shape = 0
for axis, local_sz in sorted(to_local[:3]):
axis = axis - deleted_shape
will_delete_shape = local_sz == self.full_shape[axis]
self.apply_opt(Opt(OptOps.LOCAL, axis, local_sz))
if will_delete_shape: deleted_shape += 1
return self
# **** kernel outputs ****
kernel_cnt: Final[DefaultDict[str, int]] = defaultdict(int)
@functools.cached_property
def name(self) -> str:
# kernel name (before late upcast)
kernel_type = "r" if self.reduceop is not None else ("C" if all(x.op is Ops.SINK or x.op in GroupOp.Buffer for x in self.ast.toposort) else "E")
suffix = colored('_', 'BLACK').join([colored(x.render() if isinstance(x, UOp) else str(x), c) for x,c in zip(self.full_shape, self.colors())])
name = kernel_type + (f"{len(self.ast.src)}" if len(self.ast.src) > 1 else "") + "_" + suffix
# name the function something unique
Kernel.kernel_cnt[(function_name := to_function_name(name))] += 1
num = f"n{Kernel.kernel_cnt[function_name]-1}" if Kernel.kernel_cnt[function_name] > 1 else ""
return name + colored(num, 'BLACK')
def get_optimized_ast(self) -> UOp:
@functools.lru_cache(None)
def fixup_ast(op:UOp) -> UOp:
ret = op.replace(src=tuple(fixup_ast(x) for x in op.src))
if op.op in GroupOp.Buffer and op in self.bufs:
st_uop = self.sts[self.bufs.index(op)].to_uop()
return ret.replace(src=(st_uop,)) if op.op is Ops.VALID else ret.replace(src=(ret.src[0], st_uop, *ret.src[2:]))
if op.op is Ops.SINK: return ret.replace(arg = KernelInfo(self.local_dims, self.upcasted, self.dont_use_locals))
if op.op is Ops.REDUCE_AXIS:
reduce_idx = len(self.bufs) + self.reduceops.index(op) * 2
def reduced_axes(start, stop):
return tuple(i for i in range(start, stop) if resolve(self.sts[reduce_idx].shape[i] != self.sts[reduce_idx + 1].shape[i]))
axes = reduced_axes(self.first_reduce + self.group_for_reduces, self.shape_len)
grouped_axes = reduced_axes(self.first_reduce, self.first_reduce + self.group_for_reduces)
if (tc := self.tensor_core) and (self.use_tensor_cores == 1 or self.use_tensor_cores == 3):
def fix_st(st: ShapeTracker, wd_pattern, tcd_pattern):
st = ShapeTracker.from_shape(st.shape) # st needs to be contiguous
wd, warp_dims = self.global_dims, tuple(sz for _, sz in tc.threads)
tcd, tcd_dims = self.first_upcast, tuple(sz for _, sz in tc.reduce_axes + tc.early_upcast_axes)
assert st.shape[wd:wd+len(warp_dims)] == warp_dims, f"warp dims wrong: {st.shape[wd:wd+len(warp_dims)]=} != {warp_dims=}"
assert st.shape[tcd:tcd+len(tcd_dims)] == tcd_dims, f"tcd dims wrong: {st.shape[tcd:tcd+len(tcd_dims)]=} != {tcd_dims=}"
assert tc.expanded_shape is not None
new_shape = st.shape[:tcd] + tc.expanded_shape + st.shape[tcd+len(tcd_dims):] # expand the tcd
permaxis = list(range(wd)) + [y + (wd if x == 0 else tcd) for x,y in wd_pattern] + list(range(wd+len(warp_dims),tcd)) + \
[y + (wd if x == 0 else tcd) for x,y in tcd_pattern] + list(range(tcd+len(tc.expanded_shape),len(new_shape)))
return st.reshape(new_shape).permute(tuple(permaxis)).reshape(st.shape).simplify()
srcs = list((ret.src[0] if ret.src[0].op is not Ops.CAST else ret.src[0].src[0]).src)
for i, tc_pattern in enumerate([tc.st1_pattern, tc.st2_pattern]):
if tc_pattern: srcs[i] = srcs[i].view(fix_st(srcs[i].st_arg if srcs[i].op is Ops.LOAD else srcs[i].src[0].st_arg, *tc_pattern))
if self.use_tensor_cores == 3: # for TC=3, emulate the warp addressing with locals
local_shape = tuple(1 if i >= self.first_reduce and i < self.first_upcast else s for i, s in enumerate(self.full_shape))
st = store_st = ShapeTracker.from_shape(local_shape)
local_buffer = UOp(Ops.DEFINE_LOCAL, tc.dtype_in.ptr(size=st.real_size(), local=True), (), (f"temp{i + 1}", st.real_size()))
if tc_pattern: store_st = fix_st(store_st, *tc_pattern)
local_store = UOp.store(local_buffer, store_st.to_uop(), srcs[i])
srcs[i] = UOp(Ops.LOAD, tc.dtype_in, (local_buffer, st.to_uop(), local_store))
tc_reduce_axes = tuple(self.first_upcast + ax for ax, _ in tc.reduce_axes)
if self.use_tensor_cores == 1: # real WMMA, use CONTRACT/UNROLL to get the vectorization right
upcast_axes = tuple(tuple((self.first_upcast + ax, sz) for ax, sz in up) for up in tc.upcast_axes)
wmma_arg = (str(tc), tc.dims, tc.dtype_in, tc.dtype_out, self.opts.device, prod(sz for _, sz in tc.threads), upcast_axes, tc_reduce_axes)
wmma_sz = [prod(x[1] for x in l) for l in upcast_axes]
wmma = UOp(Ops.WMMA, dtype=tc.dtype_out.vec(wmma_sz[2]), src=(
UOp(Ops.CONTRACT, dtype=srcs[0].dtype.vec(wmma_sz[0]), src=(srcs[0],), arg=upcast_axes[0]),
UOp(Ops.CONTRACT, dtype=srcs[1].dtype.vec(wmma_sz[1]), src=(srcs[1],), arg=upcast_axes[1]),
UOp.const(tc.dtype_out.vec(wmma_sz[2]), 0.0)), arg=wmma_arg)
tc_uop = UOp(Ops.UNROLL, tc.dtype_out, (wmma,), arg=upcast_axes[2])
else: # for TC=3 MUL/SUM instead of WMMA
tc_uop = UOp(Ops.REDUCE_AXIS, tc.dtype_out, ((srcs[0] * srcs[1]).cast(tc.dtype_out),), (Ops.ADD, tc_reduce_axes))
new_reduce_axes = tuple(i for i in axes if i not in tc_reduce_axes)
return ret.replace(src=(tc_uop,), arg=(Ops.ADD, new_reduce_axes)) if new_reduce_axes else tc_uop
ret = ret.replace(arg = (op.arg[0], axes))
if self.group_for_reduces and grouped_axes:
local_shape = (1,) * self.global_dims + self.full_shape[self.global_dims:self.global_dims+self.local_dims] + \
tuple([self.full_shape[i] if self.sts[reduce_idx].shape[i] != self.sts[reduce_idx+1].shape[i] else 1 \
for i in range(self.first_reduce, self.first_reduce+self.group_for_reduces)]) + \
(1,) * (self.shape_len - self.upcasted - self.group_for_reduces - self.first_reduce) + tuple([x[0] for x in self.upcasted_axis(0)])
st_uop = ShapeTracker.from_shape(local_shape).to_uop()
local_size = st_uop.arg.real_size()
local_buffer = UOp(Ops.DEFINE_LOCAL, op.dtype.ptr(local_size, local=True), (), (f"temp{self.reduceops.index(op)+1}", local_size))
local_load = UOp(Ops.LOAD, op.dtype, (local_buffer, st_uop, UOp.store(local_buffer, st_uop, ret)))
grouped_reduce = UOp(Ops.REDUCE_AXIS, op.dtype, (local_load,), arg=(op.arg[0], grouped_axes))
if op is self.reduceops[-1]: return grouped_reduce
st_uop = ShapeTracker.from_shape(tuple([1 if i in grouped_axes else a for i,a in enumerate(local_shape)])).to_uop()
return UOp(Ops.LOAD, op.dtype, (local_buffer, st_uop, UOp.store(local_buffer, st_uop, grouped_reduce)))
return ret
return graph_rewrite(fixup_ast(self.ast), view_left)
# **** this is the lowerer ****
@track_rewrites()
def linearize(self) -> Kernel:
modified_ast = self.get_optimized_ast()
if DEBUG >= 3:
print(self.name)
if getenv("RAWAST"): print(self.ast)
print(modified_ast)
print(self.applied_opts)
verify_ast(modified_ast)
self.uops:list[UOp] = linearize_uop(full_graph_rewrite(rewrite_shapetracker_with_index(modified_ast, self.opts), self.opts))
if DEBUG >= 5: print_uops(self.uops)
return self
def to_program(self, name_override:Optional[str]=None) -> ProgramSpec:
self.linearize()
src = self.opts.render(name:=to_function_name(ansiname:=(name_override if name_override is not None else self.name)), self.uops)
if getenv("RUN_PROCESS_REPLAY"):
from test.external.process_replay.helpers import get_process_replay_ctx
diskcache_put("kernel_process_replay", str(id(self)), (self.ast, self.opts, self.applied_opts, name, *get_process_replay_ctx(), src))
# group non-local bufs by the op type (LOAD or STORE) and the buffer arg. take the max access of that buffer in bytes
# TODO: these max and min don't work on symbolic, and results are very wrong.
mem_bytes = sum(max(x.src[0].dtype.itemsize * x.st_arg.real_size() for x in group)
for _, group in itertools.groupby([x for x in self.ast.toposort if x.op in GroupOp.Buffer and x.src[0].op is Ops.DEFINE_GLOBAL],
key=lambda x: (x.op, x.src[0].arg)))
return ProgramSpec(ansiname, src, self.opts.device, self.uops, mem_estimate=mem_bytes,
global_size=[1,1,1] if self.opts.has_local else None, local_size=[1,1,1] if self.opts.has_local else None)
# the living definition of intermediate UOps
def _assert_valid_uop(uop:UOp, st:ShapeTracker, sts:dict[UOp, ShapeTracker]) -> None:
if not uop.has_st or uop in sts: return
# restore globals from the two stage reduce
if uop.op is Ops.LOAD and uop.src[0].op is Ops.DEFINE_LOCAL:
_assert_valid_uop(local_reduce:=uop.src[2].src[2], uop.st_arg, sts)
sts[uop] = sts[local_reduce]
return
for x in uop.src: _assert_valid_uop(x, st, sts)
# only reduceuop is allowed to change shape, limited to turning n to 1
if uop.op in {Ops.REDUCE_AXIS, Ops.WMMA}: st = ShapeTracker.from_shape(sts[uop.src[0]].reduce(uop.axis_arg))
# movementops are pushed to VIEW
elif uop.op is Ops.VIEW:
assert len(uop.src) == 0, f"can't swizzle in kernel yet {uop}"
st = uop.arg
# everything else inherits shape
else:
if len(src_sts:=[sts[x] for x in uop.src if x in sts]) == 0: return None
st = src_sts[0]
if not all_same(shapes:=[x.shape for x in src_sts]):
if all_same(sizes:=[prod(x) for x in shapes]): raise AssertionError(f"found implicit reshape {shapes}")
raise AssertionError(f"found implicit expand {sizes} {shapes}")
sts[uop] = st
def verify_ast(ast:UOp) -> dict[UOp, ShapeTracker]:
assert ast.op is Ops.SINK and all(x.op is Ops.STORE for x in ast.src), "must be SINK"
assert all_same([x.st_arg.size for x in ast.src]), "outputs must be exactly the same size"
sts: dict[UOp, ShapeTracker] = {}
for out in ast.src: _assert_valid_uop(out, out.st_arg, sts)
shape_dims = [sorted(dedup(dims)) for dims in zip(*[x.shape for x in sts.values()])]
assert all(len(x) == 1 or (len(x) == 2 and x[0] == 1) for x in shape_dims), f"shapes must have either 1 or n in each dimension, {shape_dims}"
type_verify(list(sts))
return sts