openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

148 lines
5.0 KiB

5 years ago
import numpy as np
import common.transformations.orientation as orient
FULL_FRAME_SIZE = (1164, 874)
W, H = FULL_FRAME_SIZE[0], FULL_FRAME_SIZE[1]
eon_focal_length = FOCAL = 910.0
# aka 'K' aka camera_frame_from_view_frame
eon_intrinsics = np.array([
[FOCAL, 0., W/2.],
[ 0., FOCAL, H/2.],
[ 0., 0., 1.]])
leon_dcam_intrinsics = np.array([
[650, 0, 816//2],
[ 0, 650, 612//2],
[ 0, 0, 1]])
eon_dcam_intrinsics = np.array([
[860, 0, 1152//2],
[ 0, 860, 864//2],
[ 0, 0, 1]])
# aka 'K_inv' aka view_frame_from_camera_frame
eon_intrinsics_inv = np.linalg.inv(eon_intrinsics)
# device/mesh : x->forward, y-> right, z->down
# view : x->right, y->down, z->forward
device_frame_from_view_frame = np.array([
[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]
])
view_frame_from_device_frame = device_frame_from_view_frame.T
def get_calib_from_vp(vp):
vp_norm = normalize(vp)
yaw_calib = np.arctan(vp_norm[0])
pitch_calib = -np.arctan(vp_norm[1]*np.cos(yaw_calib))
roll_calib = 0
return roll_calib, pitch_calib, yaw_calib
# aka 'extrinsic_matrix'
# road : x->forward, y -> left, z->up
def get_view_frame_from_road_frame(roll, pitch, yaw, height):
device_from_road = orient.rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1]))
view_from_road = view_frame_from_device_frame.dot(device_from_road)
return np.hstack((view_from_road, [[0], [height], [0]]))
def vp_from_ke(m):
"""
Computes the vanishing point from the product of the intrinsic and extrinsic
matrices C = KE.
The vanishing point is defined as lim x->infinity C (x, 0, 0, 1).T
"""
return (m[0, 0]/m[2,0], m[1,0]/m[2,0])
def vp_from_rpy(rpy):
e = get_view_frame_from_road_frame(rpy[0], rpy[1], rpy[2], 1.22)
ke = np.dot(eon_intrinsics, e)
return vp_from_ke(ke)
def roll_from_ke(m):
# note: different from calibration.h/RollAnglefromKE: i think that one's just wrong
return np.arctan2(-(m[1, 0] - m[1, 1] * m[2, 0] / m[2, 1]),
-(m[0, 0] - m[0, 1] * m[2, 0] / m[2, 1]))
def normalize(img_pts, intrinsics=eon_intrinsics):
# normalizes image coordinates
# accepts single pt or array of pts
intrinsics_inv = np.linalg.inv(intrinsics)
img_pts = np.array(img_pts)
input_shape = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1))))
img_pts_normalized = img_pts.dot(intrinsics_inv.T)
img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan
return img_pts_normalized[:,:2].reshape(input_shape)
def denormalize(img_pts, intrinsics=eon_intrinsics):
# denormalizes image coordinates
# accepts single pt or array of pts
img_pts = np.array(img_pts)
input_shape = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1))))
img_pts_denormalized = img_pts.dot(intrinsics.T)
img_pts_denormalized[img_pts_denormalized[:,0] > W] = np.nan
img_pts_denormalized[img_pts_denormalized[:,0] < 0] = np.nan
img_pts_denormalized[img_pts_denormalized[:,1] > H] = np.nan
img_pts_denormalized[img_pts_denormalized[:,1] < 0] = np.nan
return img_pts_denormalized[:,:2].reshape(input_shape)
def device_from_ecef(pos_ecef, orientation_ecef, pt_ecef):
# device from ecef frame
# device frame is x -> forward, y-> right, z -> down
# accepts single pt or array of pts
input_shape = pt_ecef.shape
pt_ecef = np.atleast_2d(pt_ecef)
ecef_from_device_rot = orient.rotations_from_quats(orientation_ecef)
device_from_ecef_rot = ecef_from_device_rot.T
pt_ecef_rel = pt_ecef - pos_ecef
pt_device = np.einsum('jk,ik->ij', device_from_ecef_rot, pt_ecef_rel)
return pt_device.reshape(input_shape)
def img_from_device(pt_device):
# img coordinates from pts in device frame
# first transforms to view frame, then to img coords
# accepts single pt or array of pts
input_shape = pt_device.shape
pt_device = np.atleast_2d(pt_device)
pt_view = np.einsum('jk,ik->ij', view_frame_from_device_frame, pt_device)
# This function should never return negative depths
pt_view[pt_view[:,2] < 0] = np.nan
pt_img = pt_view/pt_view[:,2:3]
return pt_img.reshape(input_shape)[:,:2]
def get_camera_frame_from_calib_frame(camera_frame_from_road_frame):
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
calib_frame_from_ground = np.dot(eon_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, 1.22))[:, (0, 1, 3)]
ground_from_calib_frame = np.linalg.inv(calib_frame_from_ground)
camera_frame_from_calib_frame = np.dot(camera_frame_from_ground, ground_from_calib_frame)
return camera_frame_from_calib_frame
def pretransform_from_calib(calib):
roll, pitch, yaw, height = calib
view_frame_from_road_frame = get_view_frame_from_road_frame(roll, pitch, yaw, height)
camera_frame_from_road_frame = np.dot(eon_intrinsics, view_frame_from_road_frame)
camera_frame_from_calib_frame = get_camera_frame_from_calib_frame(camera_frame_from_road_frame)
return np.linalg.inv(camera_frame_from_calib_frame)