openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
4.6 KiB

#!/usr/bin/env python3
import argparse
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from typing import NamedTuple
from openpilot.tools.lib.logreader import LogReader
from openpilot.selfdrive.locationd.models.pose_kf import EARTH_G
RLOG_MIN_LAT_ACTIVE = 50
RLOG_MIN_STEERING_UNPRESSED = 50
RLOG_MIN_REQUESTING_MAX = 25 # sample many times after reaching max torque
QLOG_DECIMATION = 10
class Event(NamedTuple):
lateral_accel: float
speed: float
roll: float
timestamp: float # relative to start of route (s)
def find_events(lr: LogReader, extrapolate: bool = False, qlog: bool = False) -> list[Event]:
min_lat_active = RLOG_MIN_LAT_ACTIVE // QLOG_DECIMATION if qlog else RLOG_MIN_LAT_ACTIVE
min_steering_unpressed = RLOG_MIN_STEERING_UNPRESSED // QLOG_DECIMATION if qlog else RLOG_MIN_STEERING_UNPRESSED
min_requesting_max = RLOG_MIN_REQUESTING_MAX // QLOG_DECIMATION if qlog else RLOG_MIN_REQUESTING_MAX
# if we test with driver torque safety, max torque can be slightly noisy
steer_threshold = 0.7 if extrapolate else 0.95
events = []
# state tracking
steering_unpressed = 0 # frames
requesting_max = 0 # frames
lat_active = 0 # frames
# current state
curvature = 0
v_ego = 0
roll = 0
out_torque = 0
start_ts = 0
for msg in lr:
if msg.which() == 'carControl':
if start_ts == 0:
start_ts = msg.logMonoTime
lat_active = lat_active + 1 if msg.carControl.latActive else 0
elif msg.which() == 'carOutput':
out_torque = msg.carOutput.actuatorsOutput.torque
requesting_max = requesting_max + 1 if abs(out_torque) > steer_threshold else 0
elif msg.which() == 'carState':
steering_unpressed = steering_unpressed + 1 if not msg.carState.steeringPressed else 0
v_ego = msg.carState.vEgo
elif msg.which() == 'controlsState':
curvature = msg.controlsState.curvature
elif msg.which() == 'liveParameters':
roll = msg.liveParameters.roll
if lat_active > min_lat_active and steering_unpressed > min_steering_unpressed and requesting_max > min_requesting_max:
# TODO: record max lat accel at the end of the event, need to use the past lat accel as overriding can happen before we detect it
requesting_max = 0
factor = 1 / abs(out_torque)
current_lateral_accel = (curvature * v_ego ** 2 * factor) - roll * EARTH_G
events.append(Event(current_lateral_accel, v_ego, roll, round((msg.logMonoTime - start_ts) * 1e-9, 2)))
print(events[-1])
return events
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Find max lateral acceleration events",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("route", nargs='+')
parser.add_argument("-e", "--extrapolate", action="store_true", help="Extrapolates max lateral acceleration events linearly. " +
"This option can be far less accurate.")
args = parser.parse_args()
events = []
for route in tqdm(args.route):
try:
lr = LogReader(route, sort_by_time=True)
1 month ago
except Exception:
print(f'Skipping {route}')
continue
qlog = route.endswith('/q')
if qlog:
print('WARNING: Treating route as qlog!')
print('Finding events...')
events += find_events(lr, extrapolate=args.extrapolate, qlog=qlog)
print()
print(f'Found {len(events)} events')
perc_left_accel = -np.percentile([-ev.lateral_accel for ev in events if ev.lateral_accel < 0] or [0], 90)
perc_right_accel = np.percentile([ev.lateral_accel for ev in events if ev.lateral_accel > 0] or [0], 90)
CP = lr.first('carParams')
plt.ion()
plt.clf()
plt.suptitle(f'{CP.carFingerprint} - Max lateral acceleration events')
plt.title(', '.join(args.route))
plt.scatter([ev.speed for ev in events], [ev.lateral_accel for ev in events], label='max lateral accel events')
plt.plot([0, 35], [3, 3], c='r', label='ISO 11270 - 3 m/s^2')
plt.plot([0, 35], [-3, -3], c='r')
plt.plot([0, 35], [perc_left_accel, perc_left_accel], c='g', linestyle='--', label='90th percentile left lateral accel')
plt.plot([0, 35], [perc_right_accel, perc_right_accel], c='#ff7f0e', linestyle='--', label='90th percentile right lateral accel')
plt.text(0.4, float(perc_left_accel + 0.4), f'{perc_left_accel:.2f} m/s^2', verticalalignment='center', fontsize=12)
plt.text(0.4, float(perc_right_accel - 0.4), f'{perc_right_accel:.2f} m/s^2', verticalalignment='center', fontsize=12)
plt.xlim(0, 35)
plt.ylim(-5, 5)
plt.xlabel('speed (m/s)')
plt.ylabel('lateral acceleration (m/s^2)')
plt.legend()
plt.show(block=True)