openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

93 lines
2.4 KiB

import unittest
import numpy as np
from cereal import log
import cereal.messaging as messaging
from selfdrive.config import Conversions as CV
from selfdrive.controls.lib.longitudinal_planner import calc_cruise_accel_limits
from selfdrive.controls.lib.speed_smoother import speed_smoother
from selfdrive.controls.lib.long_mpc import LongitudinalMpc
def RW(v_ego, v_l):
TR = 1.8
G = 9.81
return (v_ego * TR - (v_l - v_ego) * TR + v_ego * v_ego / (2 * G) - v_l * v_l / (2 * G))
class FakePubMaster():
def send(self, s, data):
assert data
def run_following_distance_simulation(v_lead, t_end=200.0):
dt = 0.2
t = 0.
x_lead = 200.0
x_ego = 0.0
v_ego = v_lead
a_ego = 0.0
v_cruise_setpoint = v_lead + 10.
pm = FakePubMaster()
mpc = LongitudinalMpc(1)
first = True
while t < t_end:
# Run cruise control
accel_limits = [float(x) for x in calc_cruise_accel_limits(v_ego, False)]
jerk_limits = [min(-0.1, accel_limits[0]), max(0.1, accel_limits[1])]
v_cruise, a_cruise = speed_smoother(v_ego, a_ego, v_cruise_setpoint,
accel_limits[1], accel_limits[0],
jerk_limits[1], jerk_limits[0],
dt)
# Setup CarState
CS = messaging.new_message('carState')
CS.carState.vEgo = v_ego
CS.carState.aEgo = a_ego
# Setup lead packet
lead = log.RadarState.LeadData.new_message()
lead.status = True
lead.dRel = x_lead - x_ego
lead.vLead = v_lead
lead.aLeadK = 0.0
# Run MPC
mpc.set_cur_state(v_ego, a_ego)
if first: # Make sure MPC is converged on first timestep
for _ in range(20):
mpc.update(CS.carState, lead)
mpc.publish(pm)
mpc.update(CS.carState, lead)
mpc.publish(pm)
# Choose slowest of two solutions
if v_cruise < mpc.v_mpc:
v_ego, a_ego = v_cruise, a_cruise
else:
v_ego, a_ego = mpc.v_mpc, mpc.a_mpc
# Update state
x_lead += v_lead * dt
x_ego += v_ego * dt
t += dt
first = False
return x_lead - x_ego
class TestFollowingDistance(unittest.TestCase):
def test_following_distanc(self):
for speed_mph in np.linspace(10, 100, num=10):
v_lead = float(speed_mph * CV.MPH_TO_MS)
simulation_steady_state = run_following_distance_simulation(v_lead)
correct_steady_state = RW(v_lead, v_lead) + 4.0
self.assertAlmostEqual(simulation_steady_state, correct_steady_state, delta=0.1)