You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.4 KiB
135 lines
4.4 KiB
5 years ago
|
#!/usr/bin/env python3
|
||
|
import numpy as np
|
||
|
from live_model import gen_model, States
|
||
|
|
||
|
from .kalman_helpers import ObservationKind
|
||
|
from .ekf_sym import EKF_sym
|
||
|
|
||
|
|
||
|
|
||
|
class LiveKalman():
|
||
|
def __init__(self, N=0, max_tracks=3000):
|
||
|
x_initial = np.array([-2.7e6, 4.2e6, 3.8e6,
|
||
|
1, 0, 0, 0,
|
||
|
0, 0, 0,
|
||
|
0, 0, 0,
|
||
|
0, 0, 0,
|
||
|
1,
|
||
|
0, 0, 0,
|
||
|
0, 0, 0])
|
||
|
|
||
|
# state covariance
|
||
|
P_initial = np.diag([10000**2, 10000**2, 10000**2,
|
||
|
10**2, 10**2, 10**2,
|
||
|
10**2, 10**2, 10**2,
|
||
|
1**2, 1**2, 1**2,
|
||
|
0.05**2, 0.05**2, 0.05**2,
|
||
|
0.02**2,
|
||
|
1**2, 1**2, 1**2,
|
||
|
(0.01)**2, (0.01)**2, (0.01)**2])
|
||
|
|
||
|
# process noise
|
||
|
Q = np.diag([0.03**2, 0.03**2, 0.03**2,
|
||
|
0.0**2, 0.0**2, 0.0**2,
|
||
|
0.0**2, 0.0**2, 0.0**2,
|
||
|
0.1**2, 0.1**2, 0.1**2,
|
||
|
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
|
||
|
(0.02/100)**2,
|
||
|
3**2, 3**2, 3**2,
|
||
|
0.001**2,
|
||
|
(0.05/60)**2, (0.05/60)**2, (0.05/60)**2])
|
||
|
|
||
|
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
|
||
|
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
|
||
|
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]),
|
||
|
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
|
||
|
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
|
||
|
ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]),
|
||
|
ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])}
|
||
|
|
||
|
|
||
|
name = 'live' % N
|
||
|
gen_model(name, self.dim_state, self.dim_state_err)
|
||
|
|
||
|
# init filter
|
||
|
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_state, self.dim_state_err)
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
return self.filter.state()
|
||
|
|
||
|
@property
|
||
|
def t(self):
|
||
|
return self.filter.filter_time
|
||
|
|
||
|
@property
|
||
|
def P(self):
|
||
|
return self.filter.covs()
|
||
|
|
||
|
def predict(self, t):
|
||
|
return self.filter.predict(t)
|
||
|
|
||
|
def rts_smooth(self, estimates):
|
||
|
return self.filter.rts_smooth(estimates, norm_quats=True)
|
||
|
|
||
|
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
|
||
|
if covs_diag is not None:
|
||
|
P = np.diag(covs_diag)
|
||
|
elif covs is not None:
|
||
|
P = covs
|
||
|
else:
|
||
|
P = self.filter.covs()
|
||
|
self.filter.init_state(state, P, filter_time)
|
||
|
|
||
|
def predict_and_observe(self, t, kind, data):
|
||
|
if len(data) > 0:
|
||
|
data = np.atleast_2d(data)
|
||
|
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
|
||
|
r = self.predict_and_update_odo_trans(data, t, kind)
|
||
|
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
|
||
|
r = self.predict_and_update_odo_rot(data, t, kind)
|
||
|
elif kind == ObservationKind.ODOMETRIC_SPEED:
|
||
|
r = self.predict_and_update_odo_speed(data, t, kind)
|
||
|
else:
|
||
|
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
|
||
|
# Normalize quats
|
||
|
quat_norm = np.linalg.norm(self.filter.x[3:7,0])
|
||
|
# Should not continue if the quats behave this weirdly
|
||
|
if not 0.1 < quat_norm < 10:
|
||
|
raise RuntimeError("Sir! The filter's gone all wobbly!")
|
||
|
self.filter.x[3:7,0] = self.filter.x[3:7,0]/quat_norm
|
||
|
return r
|
||
|
|
||
|
def get_R(self, kind, n):
|
||
|
obs_noise = self.obs_noise[kind]
|
||
|
dim = obs_noise.shape[0]
|
||
|
R = np.zeros((n, dim, dim))
|
||
|
for i in range(n):
|
||
|
R[i,:,:] = obs_noise
|
||
|
return R
|
||
|
|
||
|
def predict_and_update_odo_speed(self, speed, t, kind):
|
||
|
z = np.array(speed)
|
||
|
R = np.zeros((len(speed), 1, 1))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag([0.2**2])
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
||
|
|
||
|
def predict_and_update_odo_trans(self, trans, t, kind):
|
||
|
z = trans[:,:3]
|
||
|
R = np.zeros((len(trans), 3, 3))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag(trans[i,3:]**2)
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
||
|
|
||
|
def predict_and_update_odo_rot(self, rot, t, kind):
|
||
|
z = rot[:,:3]
|
||
|
R = np.zeros((len(rot), 3, 3))
|
||
|
for i, _ in enumerate(z):
|
||
|
R[i,:,:] = np.diag(rot[i,3:]**2)
|
||
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
LiveKalman()
|